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Abstract

Quantum information science is a flourishing field of research, despite its relative nascency.
A helpful perspective is to focus on specific features and properties of quantum mechanics, and
consider their role as resources for certain scenarios or tasks.

In this thesis, we introduce several novel concepts and definitions by building on ideas
present in the existing literature. Specifically we explore research questions relating to quantum
steering, measurement incompatibility, coherence, and aspects of entanglement (such as high-
dimensionality and the multipartite scenario).

Firstly in Chapter 2, taking inspiration from quantum nonlocality in networks, we consider
allowing some of the parties to be trusted, which leads us to a natural notion of quantum network
steering. We are able to characterise several scenarios for which only classical correlations can
arise, and we also provide examples of when network steering can be exhibited, including an
example that appears unique to networks and does not rely on existing steering results.

In Chapter 3, we introduce a notion of dimensionality for sets of quantum measurements,
which can also be understood as a form of compression, or as a kind of Schmidt number
for measurement incompatibility. We discuss and prove several links to high-dimensional
quantum steering, and provide connections between several interesting channels and states via
channel-state duality.

We then change gears somewhat, and in Chapter 4 we consider the role of coherence in
gadget-based approaches to quantum computation. We construct a general framework for
quantum computation involving ‘free’ operations acting on some resourceful state, and prove
a no-go result, stating that some coherence must be present in the operations to achieve
computational universality: one cannot place this resource in a supplementary state.

Finally, in Chapter 5 we prove a lower bound on the number of copies needed to determine
whether a pure multipartite quantum state is either product across some bipartition, or is far
away from having this property. Our lower bound is tight compared to known upper bounds up
to a logarithmic factor.

In a broad sense, this thesis aims to display the power of quantum resources and to unearth
interesting connections between seemingly different notions in quantum information science.
The results presented serve as a testament to the variety and richness of research in this field,
and expose the exciting realm of future research topics and questions to explore.
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CHAPTER 1. INTRODUCTION

1.1 Background

1.1.1 History and significance of the field

Humans are always seeking to discover. To learn new skills, and uncover seemingly objective
truths. Our insatiable quest for knowledge is matched only by our continued ignorance: the
more we know, the more we realise how little we know. One can view the realm of science as
a whole as the quest to reveal some objective reality: be it the precise mechanism by which
plants convert energy, or the expected properties of a given material, or the fundamental limits
on feasible computation in our universe.

Quantum information science arrives at the intersection of several fields: primarily physics
and computer science, heavily relying on the mathematical language and formalisms under-
pinning these domains. It is a marriage between the strange and counter-intuitive world of
quantum mechanics, and deep ideas about how to quantify and communicate information, and
what it means to compute efficiently.

The first quantum revolution: quantum theory is weird!

Quantum theory emerged in the former half of the 20th century as a formalism for explaining
several physical phenomena that classical physics could not. The photoelectric effect demon-
strated that light is composed of discrete packets of energy (photons), and the Stern-Gerlach
experiment similarly showed that angular momentum is quantised (spin). The double slit
experiment provided evidence that matter can can behave like a wave or a particle - apparently
depending on whether or not one is observing!

Ultimately, one way of summarising the ‘weirdness’ of quantum theory is as follows: it seems
like the act of measurement cannot be thought of as simply revealing pre-existing values. Indeed,
the standard axioms of quantum theory (see Section 1.3) both allow for objects to be in an
indefinite state (superposition), and for the act of measurement to fundamentally change the
object itself (wave-function collapse). There are many different interpretations of quantum
mechanics, such as Many Worlds, Qbism, Bohmian mechanics, and Superdeterminism [1, 2].

A crucial topic in the realm of quantum foundations is that of Bell nonlocality [3] – see
Section 1.4.4 for some technical background. The significance of quantum nonlocality is that by
exploring the correlations between two separated parties, we can experimentally distinguish
between the predictions of quantum theory, and a universe which obeys local realism, that is,
the parties must generate their results independently of the other parties choice of measurement,
and that objects have well-defined properties independent of measurement. One finds that
quantum theory prevails, and the various interpretations strive to make this weirdness more
palatable, but cannot eradicate it completely.

2



1.1. BACKGROUND

The second quantum revolution: the weirdness can be useful!

Claude Shannon introduced the entropy of a probability distribution p as [4]

S(p) = −
∑
x

p(x) log2 p(x), (1.1)

which quantifies how uncertain of the outcome you would be when sampling from p. Shannon
also introduced two landmark coding theorems, which quantify the amount of information that
can be sent through channels under certain assumptions.

Quantum information theory seeks to extend these notions of quantifying information to
quantum systems. Here a two-level quantum system (a qubit) plays the analogous role of a bit,
and one can extend the Shannon entropy to the so-called Von Neumann entropy of a quantum
states ρ as [5]

S(ρ) = −Tr
(
ρ log2 ρ

)
. (1.2)

One can then aim to translate the machinery of classical information theory into the quantum
setting, such as through the quantum analogues of the coding theorems [6]. As quantum states
can encode classical information as a special case, this subfield as a whole can be seen as a
generalisation of classical information theory.

The field of quantum cryptography [7] essentially builds upon the facts that a quantum
measurement typically disturbs the system, and that it is impossible to perfectly copy an
unknown quantum state [8, 9]. These properties can allow two parties to have an high degree
of confidence about the security of their shared channel, and they can place their trust in the
correctness of quantum theory, as opposed to the computational hardness of a given problem
(which could be efficiently solved at some point in the future).

Quantum computation explores the potential for quantum mechanics to provide improved
algorithms (i.e. requiring less resources, such as space or time) compared to the best possible
approaches using classical computers. Intuitively, quantum algorithms are able to exploit
the property of superposition to compute in parallel, with the crucial caveat being that upon
measurement only one outcome is seen. Two of the landmark algorithms in quantum computation
are attributed to Shor and Grover, which respectively show an exponential and square root speed
up compared to the best known classical approaches. There is now a wealth of known quantum
algorithms [10, 11], and much research continues both from the fundamental perspective of
theoretical computer science, as well as a practical drive for quantum computers to be useful
in the near-term (for example in problems relating to quantum chemistry [12]), in the wake
of recent quantum computational supremacy experiments [13, 14]. In a recent survey of 37
experts, the majority indicated that they believed it was more than 50% likely that a quantum
computer would exist within the next 15 years that was capable of breaking the RSA-2048
cryptosystem within 24 hours [15].
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CHAPTER 1. INTRODUCTION

Outlook.

The field of quantum information is still extremely young. It is a field where progress typically
involves combining existing concepts from physics and computer science, and reframing ideas
about information, communication and computation in the language of quantum mechanics
to unearth an advantage for some task. Foundational work (such as in the realm of quantum
nonlocality) is critical as it informs our collective knowledge of the universe we live in. At the
same time, there is tremendous potential for quantum technologies to significantly improve
society – through more secure communication, faster algorithms, or indeed answers to problems
that would be completely unattainable even with classical supercomputers.

1.1.2 What is this thesis about?

One unifying theme throughout this thesis relates to introducing new concepts and definitions,
and then providing initial insights and results from this novel viewpoint. The remainder of
this chapter provides an informal recap of linear algebra, quantum mechanics, and some
miscellaneous concepts in quantum information that will be relevant for the rest of this thesis.

In Chapter 2, we combine the concepts of quantum steering and network nonlocality to
introduce network quantum steering. This is a novel definition, and serves to indicate when a
network composed of trusted and untrusted parties is exhibiting genuinely quantum behaviour.
In addition to introducing this new definition, our contributions include studying which quantum
states are necessary and sufficient for the parties to share in order to witness genuinely quantum
network correlations. This chapter is based on the following paper [16]:

Benjamin DM Jones, Ivan Šupić, Roope Uola, Nicolas Brunner, and Paul Skrzypczyk.
Network Quantum Steering.

Physical Review Letters, 127(17):170405, 2021.

In Chapter 3, we introduce a new notion of compression for a set of measurements, and
show multiple connections with quantum steering. This definition can also be thought of as
a kind of Schmidt number, or quantifier of dimensionality, for measurement incompatibility.
Chapter 3 is based on the following two companion papers [17, 18], but mainly drawing from
the former:

Benjamin DM Jones, Roope Uola, Thomas Cope, Marie Ioannou,
Sébastien Designolle, Pavel Sekatski, and Nicolas Brunner.

Equivalence between simulability of high-dimensional measurements
and high-dimensional steering.

Physical Review A, 107(5):052425, 2023.
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1.1. BACKGROUND

Marie Ioannou, Pavel Sekatski, Sébastien Designolle,
Benjamin DM Jones, Roope Uola, and Nicolas Brunner.

Simulability of high-dimensional quantum measurements.
Physical Review Letters, 129(19):190401, 2022.

In Chapter 4 we study various models of quantum computation, and in particular the role
of coherence in gadget based approaches. Our main contribution is a no-go result, showing that
some amount of coherence is necessary to have in the operations for universal quantum compu-
tation, it cannot be siphoned off to a supplementary state, unlike in the cases of entanglement
or magic. This chapter is fully based on the following arXiv preprint [19]:

Benjamin DM Jones, Paul Skrzypczyk, and Noah Linden.
The Hadamard gate cannot be replaced by a resource state

in universal quantum computation.
arXiv preprint arXiv:2312.03515, 2023.

In Chapter 5 (based on unpublished work with Ashley Montanaro), we provide a technical
no-go result in the realm of quantum property testing. We show that up to constant factor, at
least n/ logn copies are needed to test the property of an n-partite state being not genuinely
multipartite entangled, which closely matches a corresponding upper bound in the literature.
The bulk of this work was technical in nature, using methods involving the symmetric subspace.

We conclude in Chapter 6 with some reflections on the field in general, as well as summarising
various research questions that arose during my PhD.

1.1.3 My PhD journey

My PhD has been part of the Quantum Engineering Centre for Doctoral Training (QECDT)
at the University of Bristol, UK. This degree is typically 4 years, with an initial training year
provided by the QECDT, followed by a more conventional 3 year research project. I greatly
benefited from the first year of the program, taking theory classes in quantum information,
quantum optics, and classical algorithms, as well as undertaking some experimental projects
(including performing a Bell test of nonlocality). It was also wonderful to be part of a cohort
with 10 other students.

In the summer of 2020 I moved to Geneva, Switzerland, as I started the research phase of my
PhD, to collaborate with the group of Nicolas Brunner at the University of Geneva. I was there
for around 8 months in total, amidst some complications regarding the pandemic and Brexit. It
was in this period that I completed my first research paper on network quantum steering, and
laid the foundation for some other works in collaboration with the group in Geneva.

I took a 2 month break from my PhD in the summer of 2021 due to personal circumstances,
and resumed my studies in Bristol in September 2021. I started a project with my supervisors

5



CHAPTER 1. INTRODUCTION

Paul Skrzypczyk and Noah Linden, and had desks in both the Physics and Mathematics
departments.

In the academic year of 2021-2022 I also organised a ‘Careers in Quantum’ event with other
members of my QECDT cohort.

In the summer of 2022 I paused my PhD for 3 months to do an internship with Phasecraft,
a quantum computing startup with offices in Bristol and London (I was based in Bristol). I
then stayed as a consultant with them until December 2023, working part-time. My work with
Phasecraft has been on near-term quantum algorithms, with no overlap with my PhD research
(so this thesis does not contain any of my work with them).

In terms of teaching, I marked homeworks for the Quantum Information Theory module in
the academic years 2020-2021 and 2021-2022. I then co-taught a Quantum Information module
for first year QECDT students in the autumn of 2023, which involved in-person lecturing and
homework marking.

I also revived and co-organised the group meetings for the Quantum Information Theory
Group in Bristol during 2023.

Altogether I took 5 months formal suspension, and combined with officially switching to
part-time studies for teaching meant that my thesis hand-in deadline moved from September
2023 to April 2024.

During my PhD I attended and presented at several conferences:

• Quantum Measurement Theory 2022 in Bad Honnef, Germany – I presented a poster.

• A summer school in 2022 in Bad Honnef, Germany on Quantum Computing.

• Quantum Computing Theory in Practice 2023 in Cambridge, UK.

• Quantum Information Processing 2022 (California, US) & 2023 (Ghent, Belgium) – I
presented posters at both.

• Quantum Resource Theories 2023 in Singapore – I gave an accepted talk with video here.

• I also gave talks on two occasions at the Bristol Quantum Information Theory seminar
series.

Research-wise, I also worked and collaborated on some projects that have not made it into
this thesis, either because the projects fizzled out, are ongoing, or I did not contribute sufficiently
to be an author. These topics include: Buscemi nonlocality, entanglement and Schmidt number
in infinite dimensions, experimental verification of the dimension of a channel, simulation of
matchgate circuits, and the generalised quantum Stein’s lemma.

Finally, I opted to write up my thesis remotely from January 2024, combining working with
some travel around Latin America.
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1.2. MATHEMATICAL PRELIMINARIES

1.1.4 Highlighted references

There are several wonderful references which have helped me tremendously throughout my
studies. Nielsen & Chuang [20] is considered the undisputed bible of quantum information.
There are also many excellent books and lecture notes available, such as those of Wilde [21],
Watrous [22], de Wolf [23], Walter [24], Tomamichel [25], Heinosaari and Ziman [26], and
Aaronson [27].

We also list some review articles of particular relevance to this thesis: entanglement [28, 29],
nonlocality [3], steering [30, 31], measurement incompatibility [32, 33], coherence [34], resource
theories [35], property testing [36], measurement based quantum computation [37, 38], and
error correction [39].

1.2 Mathematical preliminaries

1.2.1 Notation

• [d] = {0, ..., d− 1}.

• C denotes the field of complex numbers.

• R denotes the field of real numbers.

• L(H) denotes the set of linear maps on a Hilbert space H. In this thesis all Hilbert spaces
are finite-dimensional and isomorphic to Cd for some d.

• S(H) denotes the set of quantum states on H, i.e. ρ ∈ L(H) such that ρ ≥ 0 and Tr(ρ) = 1.

• We use ln to denote the natural logarithm and log the logarithm to base 2.

• We denote the trace distance by D(ρ, σ) := 1
2∥ρ− σ∥1, where ∥A∥1 = Tr(

√
AA†).

• We use 1 to denote the identity operator, and sometimes write 1d to denote it acting on
a space of dimension d.

• We use P for probabilities, and E for expectation values.

• We use the symbol “:=′′ to indicate a new definition, and “≡” to denote equivalence.

We also often use notation such as “|x⟩” to denote some set {|x⟩}d−1
x=0, and similarly use

“Ma|x” to denote a set of POVM measurements or “p(a, b|x, y)” a set of probabilities, in all
cases omitting the set braces and index range for convenience.

7



CHAPTER 1. INTRODUCTION

1.2.2 Linear algebra

Linear algebra is the mathematical language underpinning quantum mechanics in finite dimen-
sions. We refer readers to textbooks [40–42] for a comprehensive guide. Here we give some more
informal and intuitive definitions.

A vector space V is a set in which the objects can be added together, or multiplied by a
number (an element of some field, usually R or C). The canonical example for us will be Cd,
where the vectors are composed of d complex numbers, and are written in Dirac notation in
some fixed basis as

|v⟩ =


v1
...
vd

 ∈ Cd. (1.3)

We say that some collection of vectors forms a basis if any vector can be written as a linear
combination of elements. That is, a discrete set |vi⟩ forms a basis for V if ∀ |w⟩ ∈ V there exists
αi ∈ C such that

|w⟩ =
∑
i

αi |vi⟩ . (1.4)

The dimension of a vector space is the smallest number of vectors required to form a basis.
The dimension of Cd is d.

A norm on a vector space is a function that assigns a notion of length to each vector. On
Cd the standard norm is

∥|v⟩∥ :=
√∑

i

|vi|2. (1.5)

A inner product captures the overlap between two vectors, taking into account both direction
and magnitude. The canonical inner product on Cd in quantum information is given by(

|v⟩ , |u⟩
)
≡⟨v|u⟩ (1.6)

=
∑
i

v∗i ui, (1.7)

which is anti-linear in the first argument. An inner product always induces a norm as follows

∥|v⟩∥ :=
√
⟨v|v⟩. (1.8)

A basis |vi⟩ is orthonormal if ⟨vi|vj⟩ = δij .
Two ubiquitous inequalities are:

The Triangle Inequality:
∥|u⟩+ |v⟩∥ ≤ ∥|u⟩∥+ ∥|v⟩∥. (1.9)

The Cauchy-Schwarz Inequality:

|⟨u|v⟩| ≤ ∥|u⟩∥∥|v⟩∥. (1.10)

8



1.2. MATHEMATICAL PRELIMINARIES

Linear maps are functions A : V → V such that A(α |v⟩ + β |w⟩) = αA |v⟩ + βA |w⟩ for
all α, β ∈ C and |v⟩ , |w⟩ ∈ V . These can be represented by matrices, assuming a vector
representation for some fixed orthonormal basis.

The dual A† of a linear map A is defined by(
|v⟩ , A† |u⟩

)
=
(
A |v⟩ , |u⟩

)
. (1.11)

In matrix notation, this dual or ‘dagger’ operation corresponds to performing the conjugate
transpose of a matrix.

A =


a11 . . . a1n
... . . . ...
an1 . . . ann

 , A† = (A∗)T =


a∗11 . . . a∗n1
... . . . ...
a∗n1 . . . a∗nn

 , (1.12)

|v⟩ =


v1
...
vn

 , |v⟩† = ⟨v| =
(
v∗1 . . . v∗n

)
. (1.13)

Note that whilst the transpose and complex conjugate are both basis dependent operations,
their combined action as the complex transpose is basis independent.

The eigenvectors |v⟩ and eigenvalues λ of a matrix A satisfy

A |v⟩ = λ |v⟩ . (1.14)

Name Definition Eigenvalues

Unitary UU † = 1 |λ| = 1

Hermitian H = H† λ ∈ R

Positive Semi-Definite (PSD) ⟨ψ|A |ψ⟩ ≥ 0 ∀ |ψ⟩ λ ≥ 0

Projectors P = P †, P 2 = P λ ∈ {0, 1}

Identity 1 |ψ⟩ = |ψ⟩ ∀ |ψ⟩ λ = 1

Table 1.1: Some noteworthy operators in quantum mechanics.

A set of vectors |vi⟩ is said to be linearly independent if ∑αi |vi⟩ = 0 implies that αi=0 for
all i. Otherwise they are said to be linearly dependent. In other words, linear independence
means that one cannot write any vector from the set as a linear combination of the others.

9



CHAPTER 1. INTRODUCTION

The null space or kernel of an operator is the subspace of vectors that get mapped to zero
(equivalently, the eigenspace associated with eigenvalue 0). The nullity is the dimension of the
kernel. The range of a matrix is the subspace spanned by the columns. The support is the set
of vectors which are not mapped to zero. The image is the set of vectors of the form A |v⟩, for
|v⟩ ∈ V . The rank of a matrix is the dimension of the range. The rank-nullity theorem says
that the sum of the rank and the nullity is equal to the dimension of the matrix (number of
columns).

The trace of a matrix is equal to the sum of the diagonal terms. This definition is basis
independent, and equivalent to the following, for |x⟩ any basis

Tr(A) =
∑
x

⟨x|A |x⟩ . (1.15)

The trace is also equal to the sum of the eigenvalues.
Recall that the following are equivalent (over C):

• A is invertible, i.e. there exists A−1 satisfying AA−1 = AA−1 = 1.

• The determinant of A is non-zero.

• A has full rank.

• All the eigenvalues of A are non-zero.

A diagonal matrix has only non-zero entries along the leading diagonal. A matrix A is
diagonalisable if there exists an invertible U and diagonal D s.t. A = UDU−1. The following
are equivalent (over Cd):

• A is diagonalisable.

• There is a basis consisting of eigenvectors of A.

Note that the properties of being invertible and diagonalisable do not imply each other.

Theorem 1.1 (Spectral Theorem). Let A be a normal matrix, i.e. AA† = A†A. Let
{λa, |a⟩} denote the eigenvalues and eigenvectors of A. Then A can be written as

A =
∑
a

λa |a⟩⟨a| (1.16)

Proof. We will use the Schur decomposition, which allows us to write any complex matrix as

A = UTU † (1.17)

10
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where U is unitary, and T is an upper triangular matrix. If A is normal, then it immediately
follows that T is also normal. But as T is upper triangular, this implies that T must be diagonal.
Now note that if |a⟩ is an eigenvector of A with eigenvalue λa, then U † |a⟩ is an eigenvector of T
with eigenvalue λa. As T is diagonal, this implies that T can be written as T = ∑

a λaU
† |a⟩⟨a|U .

So overall we have
A = UTU † =

∑
a

λa |a⟩⟨a| . (1.18)

We can define functions on normal matrices by their action on the eigenvalues.

A =
∑
a

λa |a⟩⟨a| (1.19)

f(A) =
∑
a

f(λa) |a⟩⟨a| (1.20)

e.g. eA =
∑
a

eλa |a⟩⟨a| . (1.21)

This also coincides with the Taylor expansion of the function, e.g. eA = ∑∞
n=0

An

n! . Note that
hermitian and unitary matrices are both normal, and one can check that if H is hermitian then
eiH is unitary. Indeed suppose we can write H in spectral decomposition as

H =
∑
a

a |a⟩⟨a| (1.22)

with eigenvalues a ∈ R. Then we have

eiH =
∑
a

eia |a⟩⟨a| (1.23)

is unitary, with eigenvalues eia on the complex unit circle.
The tensor product is a way of forming a vector space from two vector spaces (intuitively it

is a way of multiplying vector spaces together). If |vi⟩ and |wi⟩ respectively form bases for V
and W , then

|uij⟩ := |vi⟩ ⊗ |wj⟩ ≡ |vi⟩ |wj⟩ ≡ |vi, wj⟩ (1.24)

defines a basis for V ⊗W .
For an operator acting on V ⊗W , the partial trace (on space W ) can be defined by its

action on basis elements as

Tr2

(
|a⟩⟨b| ⊗ |c⟩⟨d|

)
= |a⟩⟨b| ⟨c|d⟩ , (1.25)

which can also be written as

Tr2

(
A⊗B

)
=
∑
x

⟨x|B |x⟩ A, (1.26)

11



CHAPTER 1. INTRODUCTION

for some basis |x⟩ on W .
Finally to give another example of a vector space, but over the real numbers, we can

consider the space of Hermitian matrices. This forms a real vector space, with natural norm
∥A∥ =

√
Tr(A2) and inner product (A,B) := Tr(AB). As we can also multiply vectors (matrices)

together in this case, it is also an example of an algebra.

1.3 The arena of Quantum Mechanics

1.3.1 Quantum Mechanics: pure and simple

There are three natural components to the theory, which encapsulate the procedure of any
physical experiment.

• States: how to describe a quantum mechanical system.

• Evolution: how states change with time.

• Measurement: how to explain the results seen on some apparatus.

Definition 1.2. A pure quantum state is a vector |ψ⟩ ∈ Cd, normalised such that ∥|ψ⟩∥ =√
⟨ψ|ψ⟩ = 1. This represents a a quantum system with d degrees of freedom.

Next, we describe evolution. We might have a state |ψ⟩ at some time and then perform
some operation on it, or let it undergo some change, and then we end up with some state |ψ′⟩.
We would want this process to be linear, and to preserve the norm (so that the output is also a
valid quantum state). This naturally leads us to unitary operators.

Definition 1.3. A pure quantum state evolves according to the action of a unitary operator
U .

|ψ⟩ 7→ U |ψ⟩ (1.27)

This is sometimes referred to as pure or coherent evolution.

Now let us introduce the formalism of quantum measurements.
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Definition 1.4. A (projective) quantum measurement can be described by a Hermitian
matrix H, which is also referred to as an observable in this context. By the spectral theorem,
H admits a spectral decomposition

H =
∑
λ

λ Pλ (1.28)

where Pλ are projectors, and the sum is over the spectrum (eigenvalues) of H.
Quantum mechanics then asserts that the probability of observing outcome λ when

measuring H on state |ψ⟩ is given by

P(λ) = ⟨ψ|Pλ |ψ⟩ (1.29)

This is generally referred to as the Born rule, and note that the spectral theorem guarantees
that P(λ) ≥ 0 and ∑λP(λ) = 1.

Example 1.5. Suppose that we write a quantum state |ψ⟩ ∈ Cd in some basis |x⟩

|ψ⟩ =
d−1∑
x=0

αx |x⟩ (1.30)

and perform the measurement corresponding to the observable

C =
d−1∑
x=0

x |x⟩⟨x| . (1.31)

Then by the Born rule, we would see outcome x ∈ [d− 1] with probability

p(x) = ⟨ψ| |x⟩⟨x| |ψ⟩ (1.32)

= |⟨ψ|x⟩|2 (1.33)

= |αx|2. (1.34)

1.3.1.1 Multiple systems and entanglement

An crucial aspect not yet mentioned is how to describe multiple systems. A simple, motivating
example is to consider two systems |ψ⟩A ∈ CdA and |ϕ⟩B ∈ CdB . ‘A’ and ‘B’ can be thought of
labelling the systems (or the parties in possession of the systems), and dA and dB are the local
dimensions.

The combined state |Ψ⟩AB is an element of the tensor product space CdA ⊗CdB , which
as a vector space is isomorphic to CdAdB , but endowed with a bipartite structure though the
tensor product. In this example, the joint state |Ψ⟩AB would be described by

13
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|Ψ⟩AB = |ψ⟩A ⊗ |ϕ⟩B ∈ CdA ⊗CdB . (1.35)

An important aspect of the tensor product is that not all vectors in CdA⊗CdB can be themselves
written as a tensor product of two vectors [43]

Definition 1.6.

• States |Ψ⟩ ∈ CdA ⊗CdB that can be written as |Ψ⟩ = |ψ⟩ ⊗ |ϕ⟩ are referred to as
(pure) product states.

• States |Ψ⟩ ∈ CdA ⊗ CdB that are not product states are referred to as entangled
states.

Example 1.7. The canonical maximally entangled state between two d-dimensional
systems is given by ∣∣∣Φ+

〉
= 1√

d

d−1∑
x=0
|x⟩ |x⟩ . (1.36)

1.3.2 Quantum Mechanics: mixed and general

The above formalism is insufficient to describe the outcomes of all experiments, for the following
reasons:

• Including classical probability: suppose we flip a coin and decide to prepare one of two
quantum states |ψ1⟩ or |ψ2⟩, and then perform a measurement.

• Suppose we have an entangled state, and wish to have a local description of one of the
subsystems.

• In practice, quantum systems are never perfectly isolated from their environment. Incor-
porating physical noise is also lacking in the pure state description.

The following definition can be originally attributed to von Neumann [5]

Definition 1.8. General quantum states are described by density operators ρ : Cd → Cd,
which are linear maps with the conditions that ρ ≥ 0 and Tr(ρ) = 1. The integer d is
referred to as the dimension of the state.
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Example 1.9. Consider preparing the quantum state |ψλ⟩ with probability p(λ). Then
the resulting density operator can be written as

ρ =
∑
λ

p(λ) |ψλ⟩⟨ψλ| . (1.37)

Definition 1.10. General quantum evolution is described by quantum channels [44, 45].
These are maps Λ : L(Cd1)→ L(Cd2) that are

• Completely positive (CP): Λ⊗ 1ρ ≥ 0 ∀ρ ≥ 0.

• Trace preserving (TP): Tr(Λ(ρ)) = Tr(ρ).

Channels are hence also referred to as CPTP maps.

See [20] for an extended discussion on quantum channels.

Proposition 1.11. The following are equivalent for a map Λ : L(Cd1)→ L(Cd2):

(i) (Definition) Λ is CPTP.

(ii) (Kraus Decomposition) There exists Kλ s.t Λ(ρ) = ∑
λKλρK

†
λ with ∑λK

†
λKλ = 1.

(iii) (Stinespring dilation) There exists U s.t.

Λ(ρ) = Tr2
(
Uρ⊗ |0⟩⟨0|U †

)
. (1.38)

See [20, 22] for proofs, and [44, 46] for early references.

Definition 1.12. The dual channel Λ∗ associated to a channel Λ is defined via the following
equation

Tr (Λ(ρ) M) = Tr (ρ Λ∗(M)) . (1.39)

One sometimes refers to channels acting on states as the Schrödinger picture, and dual channels
acting on measurements as the Heisenberg picture. We also have that if a channel Λ is completely
positive and trace preserving (CPTP), then the dual channel Λ∗ will be completely positive
and unital (CPU), where unital means that the identity is always mapped to itself: Λ∗(1) = 1.

Now let us define quantum measurements in the more general setting.
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Definition 1.13. General quantum measurements are defined by positive operator valued
measures (POVMs). This is a set of matrices {Ma}a∈S such that

Ma ≥ 0 ∀a
∑
a

Ma = 1. (1.40)

The probability of observing outcome a when measuring the POVM {Ma} on ρ is given by

p(a) = Tr(Ma ρ). (1.41)

Remark 1.14.

• A POVM may act on a space of dimension d, but can have any number of outcomes
(even countably and uncountably infinite).

• We will often denote a set of POVMs by Ma|x, where a indexes the outcome and x

indexes the POVM. We sometimes refer to this as a measurement assemblage.

• POVMs only describe the final outcome probabilities, and say nothing about the
final quantum state after measurement.

• The labels a are arbitrary, in the sense that they do not affect the probabilities in
any way.

• The name comes from measure theory: for general probability spaces the map S 7→MS

for S some measurable set (possible set of outcomes) is similar to a measure but
takes values as positive matrices.

The following theorem, known as Naimark’s dilation theorem, says that any POVM can be
interpreted as a projective measurement acting on a higher dimensional space. It is analogous
to Stinespring’s dilation theorem for channels (see Proposition 1.11 above), and in fact can be
viewed as a consequence of it.

Theorem 1.15 (Naimark [47]). Given a POVM Ma, we can always find a projective
measurement Pa acting on a higher dimensional space such that for all ρ

Tr
(
Maρ

)
= Tr

(
Paρ⊗ |0⟩⟨0|

)
. (1.42)

A proof is given in [22].
Quantum instruments are needed to describe the post-measurement states of POVMs.
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Definition 1.16.

• A quantum subchannel is a completely positive, trace non-increasing map.

• A quantum instrument is a collection of subchannels Λλ such that ∑λ Λλ is a channel.

That is, if one performs the measurement associated to the instrument Λλ on a state ρ, one
would observe outcome λ with probability Tr(Λλ(ρ)), and the resulting final state would be
Λλ(ρ)/Tr(Λλ(ρ)).

If we have a bipartite system ρAB , then the description of the state of system A is given by
partial tracing out of system B, namely ρA = Tr2(ρAB).

We also have the following definition of entanglement for density operators [48].

Definition 1.17. For density operators, a state ρ is called product if it can be written as
ρ = σ ⊗ τ for some states σ and τ . A state ρ is called separable if it can be written as the
convex combination of product states, namely as

ρ =
∑
λ

p(λ) σλ ⊗ τλ. (1.43)

for probabilities p(λ). If a state is not separable it is entangled.

This concludes our overview of finite dimensional quantum mechanics, see Table 1.2 for a
summary. There are many topics we have omitted in this review, such as quantum hamiltonians,
and the infinite dimensional case – see e.g. the following textbooks for further information
[49, 50].

1.4 Quantum Foundations, Information and Computation

In this section we detail some topics that will be of importance in later chapters in this thesis.
First of all, we introduce the trace distance, which provides an important way of defining
distances between quantum states and channels.

Definition 1.18. The trace distance on quantum states is defined as

D(ρ, σ) := 1
2∥ρ− σ∥1, (1.44)

where ∥A∥1 = Tr(
√
A†A).
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States Evolution Measurements

Schrödinger Heisenberg

Pure
|ψ⟩ ∈ Cd

∥|ψ⟩∥ = 1

Unitary U : UU † = 1

|ψ⟩ 7→ U |ψ⟩

Unitary U : UU † = 1

O 7→ U †OU

Observable = Hermitian
H = ∑

aPa
Prob(outcome a)

= ⟨ψ|Pa |ψ⟩

Mixed
ρ : Cd → Cd

ρ ≥ 0
Tr(ρ) = 1

Channel Λ :
CPTP
ρ 7→ Λ(ρ)

Dual Channel Λ∗ :
CPU

Ma 7→ Λ∗(Ma)

POVM Ma

Ma ≥ 0 ∑
aMa = 1

Prob(outcome a)
= Tr(Maρ)

Table 1.2: The arena of quantum mechanics: how states, evolution, and measurements are
described in the pure and mixed descriptions.

The trace distance has the following properties for all states ρ, σ: (i) positivity: D(ρ, σ) ≥
0 with equality ⇐⇒ ρ = σ (ii) symmetry: D(ρ, σ) = D(σ, ρ) (iii) triangle inequality:
D(ρ, σ) ≤ D(ρ, ω) + D(ω, σ), (iv) contractivity: D(Λ(ρ),Λ(σ)) ≤ D(ρ, σ) for all quantum
channels Λ.

The induced trace distance on channels results from maximising over possible input states:

D(E ,V) := max
ρ

D

(
E(ρ),V(ρ)

)
. (1.45)

We say that a channel E ϵ-approximates a channel V if they they are at most ϵ close in this
induced trace norm.

We now review some relevant areas of quantum information that will be integral to this
thesis.

1.4.1 Generalised channel state duality

We recall the generalised form of channel-state duality, see e.g. [51, 52], which will be of
particular importance in Chapter 3. This subsection is based upon Appendix A in [17].

For any fixed state σ ∈ L(HB) of full rank, there is a one-to-one correspondence between bi-
partite states ρ ∈ L(HA⊗HB) with marginal Tr1(ρ) = σ, and quantum channels Λ : L(HB) −→
L(HA). Explicitly, this is given by

ρΛ := Λ⊗ 1 |Ω⟩⟨Ω| (1.46)

Λ∗ρ(X) := σ−
1
2 Tr1(X ⊗ 1ρ)Tσ−

1
2 (1.47)

⇐⇒ Λρ(Y ) = Tr2(1⊗ (σ−
1
2Y σ−

1
2 )Tρ), (1.48)
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where Λ∗ is the dual channel to Λ, σ ≡ Tr1(ρ) ≡ ∑
n sn |n⟩⟨n| in spectral decomposition,

|Ω⟩ = ∑
n
√
sn |n⟩ |n⟩ is a purification of σ, and (·)T denotes transpose in the |n⟩ basis. One

can easily verify that ΛρΛ = Λ and ρΛρ = ρ, hence the correspondence ρ←→ Λρ is a bijection
for every fixed state σ ∈ L(HB) of full rank. Note that for states σ not of full rank we can
apply the above correspondence by restricting to the support of σ, i.e., a subspace H′B ⊆ HB of
dimension rank(σ). The above correspondence is sometimes referred to as the Choi-Jamiolkowski
isomorphism, and the state ρΛ is often called the Choi state of the channel Λ.

The most common version of this duality appears by taking σ = 1
d in the above, which

leads to the following simpler forms:

ρΛ :=Λ⊗ 1
∣∣∣Φ+

〉〈
Φ+
∣∣∣ (1.49)

Λρ(σ) := Tr1(1⊗ σ ρ), (1.50)

where
∣∣Φ+〉 = 1√

d

∑d−1
x=0 |x⟩ |x⟩ is the canonical maximally entangled state.

1.4.2 Entanglement

The following definitions will be of relevance to Chapter 3 and Chapter 5.

Definition 1.19. The Schmidt rank of a pure bipartite quantum state |Ψ⟩ is given by the
minimum number of terms to express |Ψ⟩ as a linear combination of product states.

SR(|Ψ⟩) = min n (1.51)

s.t. |Ψ⟩ =
n∑
i=1

αi |vi⟩ |wi⟩ (1.52)

It can be shown that there is always a solution to this minimisation, taking all αi real
and non-negative. Eq. (1.52) is then referred to as the Schmidt decomposition, and αi the
Schmidt coefficients.
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Remark 1.20.

• The Schmidt decomposition can be reformulated as a singular value decomposition.

• Schmidt coefficients satisfy ∑ |αi|2 = 1, are bounded between 0 and 1, and the max
Schmidt coefficient is bounded between 1/

√
d and 1 (for d the minimum of the local

dimensions).

• The Schmidt rank is equal to the rank of either reduced density matrix, and the
Schmidt coefficients are square roots of the eigenvalues of either reduced density
matrix.

As the Schmidt rank is only defined for pure quantum states, a natural question is then how
to construct a natural notion of entanglement dimensionality for general density operators. This
is achieved by the following definition, which in words says that a state has Schmidt number at
most n if it can be written as a convex combination of pure states each with Schmidt rank at
most n – see also Fig. 1.1.

Definition 1.21. The Schmidt number [53] of a density operator ρ is defined as

SN(ρ) := min
{pk, |ψk⟩}

max
k

SR(|ψk⟩) (1.53)

s.t ρ =
∑
k

pk |ψk⟩⟨ψk| .

We also have the following analogous notion for quantum channels, which describes channels
that map all states to states of Schmidt number at most n when acting on one half of the state.

Definition 1.22. A channel is n-partially entanglement breaking (n-PEB) if

SN(Λ⊗ 1 ρ) ≤ n ∀ρ. (1.54)
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|𝜓1⟩⟨𝜓1|

Figure 1.1: Illustration of Schmidt number. If the joint state of two 5-level quantum systems
can be composed as a mixture of states of only 2-level entanglement, then the overall state has
Schmidt number 2 despite being of dimension 5.

Lemma 1.23. The following are equivalent:

(i) Λ is n-PEB.

(ii) SN(ρΛ) ≤ n for any choice of the marginal state in the generalised channel-state
duality – see Eq. (1.48).

(iii) There exists a Kraus decomposition of Λ(Y ) = ∑
λKλY K

†
λ such that rank(Kλ) ≤ n

for all λ.

See [17] for proof.

We also give the following definitions relating to multipartite entanglement, which will be
central to Chapter 5.

Definition 1.24. Consider a state |ψ⟩ ∈ (Cd)⊗n consisting of n parties, each of local
dimension d. We say that it is

• Genuinely multipartite entangled (GME) if it is entangled across any bipartition of
the n parties.

• Bipartite product (BP) if it is not GME, that is, there exists some non-trivial partition
S ⊂ [n] such that the state is product across this bipartition.

• Mulitpartite product (MP) if the state is product across every bipartition, i.e. the
state can be written as the tensor product of n local states.
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1.4.3 Measurement incompatibility

The main concept here is that a set of measurements is considered compatible or jointly meas-
urable, if we instead could perform an alternative ‘parent’ measurement and post-process to get
all the values of the other measurements (in a single round, not after gathering statistics). The
following references serve as helpful review articles [32, 54].

Recall that a set of measurements is represented by POVMs Ma|x, i.e. matrices such that
Ma|x ≥ 0 ∀a, x and ∑aMa|x = 1 ∀x. Formally, a set of POVMs is said to be compatible if
they can be written as

Ma|x =
∑
λ

p(a|x, λ)Gλ (1.55)

for some parent POVM Gλ and probabilities p(a|x, λ).
Now consider a POVM Ga with outcomes labelling the possible outcomes of all the measure-

ments: a = (a1, . . . , an). For example, outcome a = (+1,−1,−1) would indicate that outcome
+1 occurred for the first measurement and outcome −1 for the latter two measurements.

It turns out that these two notions are equivalent, see e.g. [32] for a proof sketch of the
following fact.

Proposition 1.25. Given a set of POVMs Ma|x, the following are equivalent:

(i) There exists probabilities p(a|x, λ) and a POVM Gλ such that

Ma|x =
∑
λ

p(a|x, λ)Gλ (1.56)

(ii) There exists a POVM Ga such that

Ma|x =
∑

a : ax=a
Ga (1.57)

It is also known that for any compatible measurements, one can find Naimark dilations
such that the corresponding projective measurements commute [32].

1.4.4 Nonlocality

Bell nonlocality is a crucial aspect of quantum information and foundations [3, 55]. It provides
one of the most striking examples of the boundary between classical and quantum physics,
and forms the basis of studies into entanglement, measurement incompatibility, and quantum
steering. Early studies into this phenomenon date back to John Bell [56], and Boris Tsirelson
[57–59]. There is the following quote from Valerio Scarani’s book [55]: “Bell locality means that
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A

x

a

γ
B

y

b

Figure 1.2: Bell nonlocality scenario. Two parties receive inputs x and y and respectively give
outputs a and b. The information gathered in this scenario is the probabilities p(a, b|x, y).

the process by which each player generates the output does not take into account the other
player’s input”.

Consider two spatially separated parties, Alice and Bob, who respectively are given inputs
labelled x and y, and give respective outputs a and b – see Fig. 1.2. After many rounds, we can
describe the observed data by conditional probability distributions p(a, b|x, y).

Suppose that Alice and Bob possess some shared information, described by the random
variable λ, but have no access to the input of the other party – this is typically enforced by
requiring the output to be given in a timeframe shorter than the time it would take light to pass
from Alice to Bob. In this case, Alice’s output can be described by the conditional distribution
p(a|x, λ), but does not depend on y. The overall resulting distributions, termed local hidden
variable (LHV) models, are thus of the form

p(a, b|x, y) =
∑
λ

p(λ)p(a|x, λ)p(b|y, λ). (1.58)

Now consider distributions arising from the laws of quantum mechanics. Alice and Bob perform
POVM measurements, respectively labelled as Ma|x and Nb|y, and each may possess part of a
shared quantum state ρ. The resulting probabilities are hence of the form

p(a, b|x, y) = Tr
(
Ma|x ⊗Nb|y ρ

)
(1.59)

Crucially, there are distributions arising from quantum mechanics that cannot be written with
a local hidden variable model.

Let us briefly discuss some relevant aspects of quantum nonlocality. Given a set of prob-
abilities p(a, b|x, y), also referred to as a behaviour , one can think of this list of numbers as
a point in Rd, for some d. Clearly all valid probability distributions must satisfy the linear
constraints p(a, b|x, y) ≥ 0 ∀a, b, x, y and ∑a,b p(a, b|x, y) = 1 ∀x, y. It turns out that the set
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of behaviours admitting a local hidden variable model is a convex polytope in this space – often
referred to as the local set. The set of behaviours admitting a quantum model (strictly greater
than the local set) is also convex, but not a polytope. There is also the set of no-signalling
behaviours, namely those that satisfy

p(a|x, y) = p(a|x, y′) ∀a, x, y, y′ (1.60)

p(b|x, y) = p(b|x′, y) ∀b, y, x, x′. (1.61)

This set is strictly bigger than the set of quantum behaviours, and is a convex polytope. Bell
inequalities can be thought of as hyperplanes that separate the quantum set from the local set.

One can observe that both entanglement and measurement incompatibility in both parties
measurements are necessary to witness quantum nonlocality. Namely, if the state ρ = ∑

λ p(λ)σλ⊗
τλ is separable, then any behaviour can be written as

p(a, b|x, y) = Tr
(
Ma|x ⊗Nb|y ρ

)
(1.62)

=
∑
λ

p(λ)Tr
(
Ma|xσλ

)
Tr
(
Nb|yτλ

)
(1.63)

=
∑
λ

p(λ)p(a|x, λ)p(b|y, λ), (1.64)

showing that one can never witness quantum nonlocality with a separable state. Similarly,
suppose that e.g. Alice’s measurements are compatible: Ma|x = ∑

λ p(a|x, λ)Gλ. Then

p(a, b|x, y) = Tr
(
Ma|x ⊗Nb|y ρ

)
(1.65)

=
∑
λ

p(a|x, λ)Tr
(
Gλ ⊗Nb|y ρ

)
(1.66)

=
∑
λ

p(λ)p(a|x, λ)Tr
(
Nb|yσλ

)
(1.67)

=
∑
λ

p(λ)p(a|x, λ)p(b|y, λ), (1.68)

hence measurement incompatibility in both parties is also necessary to witness quantum
nonlocality.

Therefore, one can think of Bell nonlocality as a device independent test of entanglement
and measurement incompatibility of both parties. Device independence [60] refers to the fact
that we do not trust the exact actions of Alice and Bob, only the outcome distributions.

1.4.4.1 Network nonlocality

Recently, there has been much interested generated in exploring notions of nonlocality in
quantum networks, see [61] for a recent review. The principal idea is to consider multiple
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statistically independent sources, distributing quantum states to the various parties in the
network.

A key development has been the discovery of non-classical correlations in networks in which
the parties only perform a fixed measurement, i.e. have no input. One primary object of study
has been the triangle network [62] (see Fig. 1.3), for which non-classical correlations not resting
on standard Bell nonlocality have recently been proposed [63].

B

A

C

a

b c

β α

γ

Figure 1.3: The triangle network nonlocality scenario.

These ideas will be of high relevance in Chapter 2.

1.4.5 Quantum steering

A

x

a

γ
B

σa|x

Figure 1.4: Quantum steering scenario. One party produces output a upon receiving input x
and is considered untrusted (indicated here by a red box), and the other party is considered
trusted (indicated here by a green circle) and has complete information about their system.
The data produced can be expressed via an assemblage σa|x, where σa|x ≥ 0 ∀a, x, and∑
a σa|x = ρB ∀x, for some state ρB.

This subsection is based on parts of [16]. In a bipartite steering scenario, one party performs
measurements on a shared state ρAB, which ‘steers’ the quantum state of the other particle.
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If Alice performs a set of measurements, labelled by x, with outcomes a, and corresponding
POVM elements Ma|x, then the collection of sub-normalised ‘steered states’ of Bob are

σBa|x := Tr1(MA
a|x ⊗ 1

BρAB), (1.69)

where p(a|x) = Tr(σa|x) are the statistics of Alice’s measurements – see also Fig. 1.4. The
collection of sub-normalised states {σa|x}a,x are commonly referred to as a steering assemblage
[64]. If the assemblage can be explained by a local hidden state (LHS) model, of the form

σa|x =
∑
λ

p(λ) p(a|x, λ)σλ, (1.70)

where λ is a hidden variable, distributed according to p(λ), σλ are ‘hidden states’ of Bob, and
p(a|x, λ) are local ‘response functions’ of Alice, then we say that it has LHS form, or does not
demonstrate steering [65]. If there exist measurements such that σa|x does not admit such an
LHS decomposition, we say that the state ρAB is steerable from A to B. If for all measurements
we can never demonstrate steering with a given state, we say it is unsteerable (from A to B).
Note that steering can be asymmetrical; some states are steerable from Alice to Bob, but not
the other way around [66].

Quantum steering is often described as a semi-device independent (SDI) scenario, as one of
the parties is considered untrusted (we only consider the resulting probabilities), and the other
party is considered trusted (i.e. can perform full tomography).

The original notions of quantum steering can be dated back to Schrödinger [43, 67], also
see [30, 31, 68] for review articles on quantum steering.

1.4.5.1 Connections between quantum steering and measurement incompatibility

There are two main connections between measurement incompatibility and quantum steering.
Firstly, recall the relevant data in these two scenarios:

Quantum steering Measurement Incompatibility (1.71)

σa|x ≥ 0 Ma|x ≥ 0 (1.72)∑
a

σa|x = ρB ∀x
∑
a

Ma|x = 1 ∀x (1.73)

We have the following equivalence [31]:

Proposition 1.26.

(i) If σa|x is LHS then Ma|x := ρ
−1

2
B σa|xρ

−1
2

B is compatible.

(ii) If Ma|x is compatible then σa|x := ρ
1
2
BMa|xρ

1
2
B is LHS, for any state ρB.
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The second relationship is very similar to something already discussed in the nonlocality
case – see Eq. (1.66) and subsequent equations. We have that if Ma|x is compatible, then

σa|x = Tr1

(
Ma|x ⊗ 1 ρ

)
(1.74)

will be LHS for any shared state ρ.

1.4.6 Stabilisers, Cliffords, and magic

This subsection will prove relevant to Chapter 4, as our results are inspired by ideas from magic
state injection.

The computational basis refers to some preferred set of basis states, labelled by bitstrings
{|x⟩}x∈{0,1}n . One can also think of this as the incoherent basis – see Section 1.4.7.1.

The Pauli matrices are

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, (1.75)

and the n-qubit Pauli group Pn is generated by tensor products of Pauli matrices, elements
being referred to simply as ‘Paulis’. They can all be written as

ic Xa1Zb1 ⊗ . . . XanZbn (1.76)

for c ∈ {0, 1, 2, 3} and ai, bj ∈ {0, 1}.
Paulis serve a special role in quantum information for several reasons. They are both unitary

and hermitian, meaning that they can describe both evolution and measurement. The Pauli
matrices all square to the identity, are traceless, and satisfy the following expressions

XY = iZ Y Z = iX ZX = iY. (1.77)

The n-qubit Pauli group also spans the space of 2n × 2n complex matrices.
The Clifford group Cn is defined as the normaliser of Pn:

Cn = {U : UPU † ∈ Pn ∀P ∈ Pn} (1.78)

and is generated by (tensor products of) the following gates

Hadamard Phase Controlled-NOT (1.79)

H = 1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

There are several equivalent definitions for a state |ψ⟩ being a stabiliser state:
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• There exists a Clifford unitary U such that |ψ⟩ = U |0n⟩, where |0n⟩ is the all zero
computational basis state.

• There exists an abelian subgroup S of Pn of size |S| = 2n and P |ψ⟩ = |ψ⟩ for all P ∈ S.

• There exists an affine subspace A ⊆ {0, 1}n (where {0, 1} is interpreted as the field of
two elements), a linear function l and a quadratic function q (with respect to the field
operations) such that (see [69, 70] for proof)

|ψ⟩ =
∑
x∈A

il(x) (−1)q(x) |x⟩ . (1.80)

The T gate and the T state are respectively defined as

T =
(

1 0
0 e

iπ
4

)
, |T ⟩ = 1√

2

(
|0⟩+ e

iπ
4 |1⟩

)
. (1.81)

A set of quantum gates (unitaries) is considered universal if a sequence of gates from the set
can approximate any unitary to arbitrary precision [20]. The most common universal gate set
considered in quantum information is the Clifford + T gate set.

The Gottesman–Knill Theorem [20, 71–73] states that any quantum computation composed
of the following operations is efficiently classically simulable:

• Preparation of computational basis states.

• Unitaries from the Clifford group.

• Classical control.

• Measurement in the computational basis.

Here “efficiently classically simulable” means the overall process only requires resources
(time and space) that scale at most polynomially with the number of qubits n (whereas naively
one would need memory scaling like ∼ 2n just to store the state of the system).

Magic state injection refers to a model of quantum computation in which only Clifford
unitaries can be performed, and one implements the T gate using the following circuit (also
called a gadget).

|ψ⟩ • S T |ψ⟩

|T ⟩

(1.82)

In words, this circuit depicts a controlled-NOT gate being applied between the input |ψ⟩ and a
|T ⟩ state, followed by a phase gate on the input register conditioned on measuring the second
register in the computational basis.
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The benefit of this approach is that one can use an error correcting code that is well suited
to Clifford gates, and separate the process of preparing T states as a subroutine. In particular,
one can consider procedures that accept multiple noisy or imperfect T states and output a state
that is closer to a T state – this process is referred to as magic state distillation [39, 74, 75].

1.4.7 Resource theories

Parts of this subsection are based on [19]. Quantum resource theories [35] are flourishing as
an active area of research. The primary goal is to consider unifying principles across different
aspects of quantum mechanics that are quintessentially ‘quantum’. Specific examples include
entanglement [76], coherence [34], magic [77, 78], and incompatibility [32]. There are multiple
approaches: one can take some well-motivated free set of states and define the free channels as
those preserving this set, or start with operationally motivated free operations and define the
free states as those which can be generated using free operations alone.

There are several common resource quantifiers. Here we define them for states, although
there exist analogous quantities for channels, measurements, and other quantum objects. Let F
denote the free set of states. Firstly, we have the robustness:

RY (ρ) = min
σ∈Y

{
r ≥ 0

∣∣∣∣ ρ+ rσ

1 + r
∈ F

}
(1.83)

where Y ⊆ S(H). If Y = F is the free set, this is the standard robustness. If Y = S(H) is the
full set of states, this is the generalised robustness. If Y = {1d} is the maximally mixed state,
this is the random robustness.

We also have the weight of a resource, which will appear in Chapter 3.

W(ρ) = min
σ∈F
τ∈S

{
w ≥ 0

∣∣∣∣ρ = (1− w)σ + wτ

}
. (1.84)

1.4.7.1 Coherence

We now provide some more explicit detail on the resource theory of coherence, as it is will be
of importance to Chapter 4.

The starting point is to fix some particular basis {|x⟩} as ‘free’, and refer to this basis as
incoherent. These basis states can be thought of as easy to prepare, and in our work we consider
them as computational basis states. An incoherent pure state is then equal to a single one of
these basis states, and superpositions or coherent states are considered resourceful. Formally, an
arbitrary mixed state ρ is called incoherent with respect to the basis {|x⟩} if it can be written
as

ρ =
∑
x

px |x⟩⟨x| , (1.85)
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for some probabilities px, i.e. it is diagonal in this basis. Conceptually this consists of all
the states that can be written as probabilistic mixtures of computational basis states, with
no superposition present. Note that the maximally mixed state 1

d is an example of such an
incoherent state (with px = 1

d ∀ x). We refer to the set of incoherent states as I.
A unitary U is incoherent relative to the basis {|x⟩}dx=1 if it can be written as

U =
d∑

x=1
eiθx |π(x)⟩⟨x| (1.86)

for some string of d real numbers θx and some permutation π on d elements. In particular,
incoherent unitaries map a computational basis state to another computational basis state,
possibly multiplied by some phase. This definition also implies that UρU † ∈ I if ρ ∈ I.

Example 1.27. Examples of incoherent unitaries include the Pauli matrices, the phase
and T gates, CNOT, SWAP, and the Toffoli gate. Examples of unitaries that are coherent
(i.e. not incoherent, able to generate coherence) include the Hadamard gate, the Fourier
transform, and X rotations eiθX for θ /∈ {nπ ; n ∈ Z}.

Remark 1.28. Note that if a unitary cannot create any superpositions, then it must be of
the form

U =
∑
x

αx |π(x)⟩⟨x| (1.87)

for some complex numbers αx. However for this to be unitary, we must have that |αx| = 1
for all x. Hence if a unitary is not of the form Eq. (1.86), then it must neccesarily map at
least one computational basis state to a superposition (linear combination) of at least two
computational basis states (i.e. it cannot change the magnitude of a computational basis
state).

For a fixed basis |x⟩, the dephasing map is defined as

∆(ρ) :=
∑
x

|x⟩⟨x| ρ |x⟩⟨x| (1.88)

this has the effect of removing the off-diagonal elements on a density matrix, and is a valid
quantum channel (it is trace-preserving and completely positive).

There are many different approaches to defining a free set of operations in this resource
theory, see [34, 79] for summaries. We review several of them here. Maximally Incoherent
Operations (MIO) are those which map incoherent states to other incoherent states, namely E
is a MIO if E(I) ⊆ I.
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Lemma 1.29. A channel Ω maps incoherent states to incoherent states (i.e. is MIO) if
and only if ∆ ◦ Ω ◦∆ = Ω ◦∆.

Proof. Note that for all ρ ∈ I we have ∆(ρ) = ρ. If Ω maps incoherent states to incoherent
states, then we must have Ω(∆(ρ)) = ∆(Ω(∆(ρ))) for all ρ, which implies ∆ ◦ Ω ◦∆ = Ω ◦∆.

To show the other direction, assume that ∆ ◦ Ω ◦∆ = Ω ◦∆. Then for ρ incoherent, we
have Ω(ρ) = Ω(∆(ρ)) = ∆(Ω(∆(ρ))), which is incoherent.

The set of incoherent operations (IO) is defined as the set of quantum channels E which
admit a Kraus decomposition E(ρ) = ∑

λKλ ρ K
†
λ such that KλρK

†
λ

Tr(KλρK
†
λ

)
∈ I for all ρ ∈ I. This

definition means that it is not possible to generate coherence even probabilistically given access
to the quantum instrument defined by {Kλ}. This definition is equivalent to being able to
write each Kλ in the form ∑

x αx |π(x)⟩⟨x| where the coefficients αx can be arbitrary complex
numbers. If each K†λ can also be written this way, the corresponding operations are referred to
as strictly incoherent operations (SIO). We also mention physically incoherent operations (PIO),
which are quantum channels that can be realised via performing a global incoherent unitary on
the input state and some incoherent ancillary state, followed by an incoherent measurement and
classical processing [80]. Finally, dephasing-covariant incoherent operations (DIO) are channels
E which commute with the dephasing map E ◦∆ = ∆ ◦ E . We have the following inclusions [80]

PIO ⊊ SIO ⊊ DIO ⊊MIO. (1.89)

1.4.8 Random states and the symmetric subspace

The following content will prove relevant to Chapter 5.
Consider k quantum systems of local dimension d, i.e. some state |ψ⟩ ∈ (Cd)⊗k. Define

unitaries Uα that permute the k systems for some permutation α in the symmetric group Sk:

Uα |x1, . . . , xk⟩ =
∣∣∣xα−1(1), . . . , xα−1(k)

〉
. (1.90)

Note that UαUβ = Uαβ. One can then define the symmetric subspace [81] as follows:

Symk
d :=

{
|ψ⟩ ∈ (Cd)⊗k : Uα |ψ⟩ = |ψ⟩ ∀ α ∈ Sk

}
, (1.91)

which can equivalently be defined as the span of states of the form |ψ⟩ = |ϕ⟩⊗k for |ϕ⟩ ∈ Cd.
We can write the projector Πk

d onto the symmetric subspace as

Πk
d := E

α∈Sk

[Uα] = 1
k!
∑
α∈Sk

Uα. (1.92)

Now let dψ denote the Haar measure on quantum states. Then a well-known fact [81] is that
integration over k copies of a state |ψ⟩ ∈ Cd is proportional to the projector onto the symmetric

31



CHAPTER 1. INTRODUCTION

subspace, specifically we have (
k + d− 1

k

)∫
dψ |ψ⟩⟨ψ|⊗k = Πk

d. (1.93)

1.4.9 Some important states and channels

Here we detail some miscellaneous objects that are of general importance in quantum information,
and will appear intermittently throughout this thesis.

We define the 2 qubit Bell states as
∣∣∣ϕ+

〉
= 1√

2

(
|00⟩+ |11⟩

) ∣∣ϕ−〉 = 1√
2

(
|00⟩ − |11⟩

)
(1.94)∣∣∣ψ+

〉
= 1√

2

(
|01⟩+ |10⟩

) ∣∣ψ−〉 = 1√
2

(
|01⟩ − |10⟩

)
(1.95)

A measure and prepare channel is one that consists of performing a measurement on the given
state, and preparing another state depending on the outcome. Specifically they can be written
as

Λ(ρ) =
∑
λ

Tr
(
Gλρ

)
σλ, (1.96)

for Gλ some POVM and σλ some set of states.
An extreme case of this is when the POVM is trivial (has one outcome). The resulting

preparation channel simply corresponds to discarding the input and preparing another fixed
state.

Λ(ρ) = σ ∀ρ (1.97)

Intuitively, these channels can be thought of as the ‘opposite’ of unitary channels: unitary
channels are precisely the channels that preserve all of the quantum information content of
a state (and can be inverted), whereas preparation channels preserve none of the quantum
information content of the original state.

We also remark that the dual of a measure and prepare channel is a prepare and measure
channel:

Λ∗(M) =
∑
λ

Tr
(
Mσλ

)
Gλ. (1.98)

Measure and prepare channels also happen to coincide exactly with entanglement breaking
channels [28], namely channels such that Λ⊗ 1ρ is separable for all ρ – these are also 1-PEB
channels as in Definition 1.22.

A channel Λ is incompatibility breaking if it maps any measurement assemblage to a
compatible one in the Heisenberg picture, i.e. if Λ∗(Ma|x) is compatible for all Ma|x.

We now introduce some important one-parameter families of channels. In the below, we
take the input ρ ∈ S(Cd) to be a d-dimensional input state.
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The depolarising channel is defined as

Λµ(ρ) = µρ+ (1− µ)1
d
. (1.99)

The dephasing channel is defined as

Λµ(ρ) = µρ+ (1− µ)diag(ρ), (1.100)

where diag(ρ) signifies setting the off-diagonal terms in ρ to zero (note that this is a valid
channel in itself).

The erasure channel is defined as

Λη(ρ) = ηρ+ (1− η) |d⟩⟨d| , (1.101)

which formally maps a d dimensional state to a d+ 1 dimensional state.
The isotropic states [28] are defined as

ρ(µ) = µ
∣∣∣ϕ+

〉〈
ϕ+
∣∣∣+ (1− µ)1

d
, (1.102)

which is the (standard) Choi state of the depolarising channel.
Werner states [28, 82] are defined as those which are invariant under the action of U ⊗ U ,

for any local unitary U . For two qubits one can write this family of states as

ρ(µ) = µ
∣∣ψ−〉〈ψ−∣∣+ (1− µ)1

d
. (1.103)

We call a bipartite state ρ local if it cannot be used to witness Bell nonlocality. Formally, that
means for all POVMs Ma|x and Nb|y there exists a local hidden variable model, i.e. probabilities
p(λ), p(a|x, λ), p(b|y, λ), such that

Tr
(
Ma|x ⊗Nb|yρ

)
=
∑
λ

p(λ)p(a|x, λ)p(b|y, λ) (1.104)

If a state is not local we refer to it as nonlocal.
We call a bipartite state ρ unsteerable if it cannot be used to witness quantum steering.

Formally, that means for all POVMsMa|x there exists a local hidden state model, i.e. probabilities
p(λ), p(a|x, λ), and states σλ, such that

Tr1

(
Ma|x ⊗ 1 ρ

)
=
∑
λ

p(λ)p(a|x, λ)σλ (1.105)

If a state is not unsteerable we refer to it as steerable.
An important fact is that there exist entangled yet unsteerable states, and steerable yet

local states. A standard example of this is via the isotropic states in Eq. (1.102). It is known
that these states are separable for µ ≤ 1

d+1 [28], unsteerable for µ ≤ 3d−1
d+1 (d − 1)d−1d−d [31],

and local for µ ≤ (d−1)(d−1)(3d−1)
(d+1)dd [3], for which there exists a separation for all dimensions d.
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We summarise some of the above in the following table, which also depicts some relationships
between the states and channels via standard channel-state duality.

Channel State
Λρ(σ) = Tr2(1⊗ σρ) ←→ ρΛ = Λ⊗ 1

∣∣Φ+〉〈Φ+∣∣
Λ CP ρ ≥ 0
Λ TP Tr(ρ) = 1

Λ unitary ρ pure
Λ prepare ρ product
Λ n-PEB SN(ρ) = n

Λ incompatibility breaking ρ unsteerable
Λ dephasing isotropic

Table 1.3: Some special channels and their corresponding Choi states, see Section 1.4.1 for
details of this correspondence.

1.5 Concluding remarks

In this introductory chapter, we have provided some context to the field of a whole, and
set the stage for the remaining chapters. We reviewed key concepts from linear algebra and
finite-dimensional quantum mechanics, as well as discussing various notions from quantum
information which will be important background for the rest of this thesis. Next, in Chapter 2 we
will outline our first research contribution by studying quantum steering in network scenarios.

34



C
h

a
p

t
e

r 2
Network quantum steering

Chapter Summary

The development of large-scale quantum networks promises to bring a multitude of
technological applications as well as shed light on foundational topics, such as quantum
nonlocality. It is particularly interesting to consider scenarios where sources within the
network are statistically independent, which leads to so-called network nonlocality, even
when parties perform fixed measurements. Here we promote certain parties to be trusted
and introduce the notion of network steering and network local hidden state (NLHS) models
within this paradigm of independent sources. In one direction, we show how results from Bell
nonlocality and quantum steering can be used to demonstrate network steering. We further
show that it is a genuinely novel effect, by exhibiting unsteerable states that nevertheless
demonstrate network steering, based upon entanglement swapping, yielding a form of
activation. On the other hand, we provide no-go results for network steering in a large class
of scenarios, by explicitly constructing NLHS models.

This chapter is based on the following publication:

Benjamin DM Jones, Ivan Šupić, Roope Uola, Nicolas Brunner, and Paul Skrzypczyk.
Network Quantum Steering.

Physical Review Letters, 127(17):170405, 2021.

Relevant background: quantum nonlocality and steering (Section 1.4.4 and Section 1.4.5),
miscellaneous states and channels (Section 1.4.9): such as separable, unsteerable and local
states, Werner states, and the erasure channel.
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2.1 Introduction

Quantum correlations expose a rich structure when considered in scenarios with many
parties. A case of particular interest is that of quantum networks, featuring a number of distant
parties connected by several quantum sources. Significant further work is still required to
reach a deeper theoretical understanding of these scenarios, whilst also keeping inline with
experimental and technological developments towards quantum networks (with applications
such as secure quantum communication) [83].

Recently, a generalisation of the concept of Bell locality [56] was proposed to tackle the
question of quantum nonlocality in networks – see [61] for a recent review. The key idea is
to consider the various sources in the network to be statistically independent [84–86]. This
independence leads to non-convexity in the space of relevant correlations, undermining the use
of pre-existing tools and creating a need for new approaches, both analytically [87–95] and
numerically [96]. The network structure offers new interesting effects, such as the possibility to
certify quantum nonlocality “without inputs” (i.e. a scenario where each party performs a fixed
quantum measurement) [63, 85, 86, 97, 98]. Also, the use of non-classical measurements allows
for novel forms of quantum nonlocal correlations that are genuine to networks [99]. In parallel,
several works have explored the structure of quantum states assuming a certain underlying
network structure [62, 100–102].

A central scenario of study has been the so-called “triangle network” [62, 93, 97], consisting of
three parties, pairwise connected by independent sources, each performing a fixed measurement,
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yielding statistics p(a, b, c). Whilst it is possible to embed standard Bell nonlocality into this
scenario [86], the existence of correlations with a high degree of symmetry and no classical
description indicate that these phenomena may be unique to networks [63].

In this chapter, motivated by the difficulty in characterising quantum networks both
conceptually and computationally, we consider quantum network scenarios in which some of
the parties are trusted while the others are untrusted. This naturally connects to the notion
of quantum steering [65] (see [30, 31] for reviews, and Section 1.4.5 for an overview) which
captures quantum correlations in a scenario involving a trusted and an untrusted party. While
the notion of multipartite steering has been previously considered [103, 104], this work explores
a different direction, targeting the scenario of networks with independent sources.

Our main focus here will be on the simplest setting of a linear network with trusted
endpoints and intermediate untrusted parties who each perform a fixed measurement. We begin
by formalising the notions of network local hidden state (NLHS) models, and network steering.
We then leverage standard steering and nonlocality scenarios to provide simple examples of
network steering. Next, we outline a surprising effect in which two-way unsteerable states can
demonstrate network steering through entanglement swapping, leading to a form of activation.
Finally, we characterise some natural scenarios that always admit an NLHS model by identifying
properties of the sources. We conclude the chapter by listing some promising future avenues for
research.

2.1.1 Summary of results

Main conceptual contributions:

• We introduce a novel definition of quantum steering for networks.

• We provide no-go results of when network steering is not possible

• We give concrete examples of network steering, including a form of activation using
unsteerable states.

Main technical calculations:

Lemma 2.8. Define the Doubly-Erased Werner (DEW) state as

ρDEW(η, ω) := Λη ⊗ Λη
(
ω
∣∣ψ−〉〈ψ−∣∣+ (1− ω)14

)
, (2.1)

where Λη(ρ) = ηρ+ (1− η)Tr(ρ) |d⟩⟨d| is the erasure channel and |ψ−⟩ = (|01⟩ − |10⟩)/
√

2.
Then projecting |ψ−⟩⟨ψ−| onto two copies of ρDEW(η, ω) leads to ρDEW(η, ω2), with
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probability η2/4. Namely,

TrBC
( [

1A⊗
∣∣ψ−〉〈ψ−∣∣BC⊗1D] [ρDEW(η, ω)AB⊗ρDEW(η, ω)CD

] )
= η2

4 ρDEW(η, ω2)AD (2.2)

Theorem 2.9. Consider a four party network scenario with trusted endpoints and
untrusted central parties who perform fixed measurements, as in the following figure (also
Fig. 2.3(b)):

A
β

B

b

γ
C

c

α
D

Ordering the sources as {ρAB, ρB′C , ρC′D} and denoting SEP as the set of separable
states, LOC as the set of Bell-local states, and UNSTEER→ as the set of unsteerable
states (in an appropriate direction) we have that {SEP, LOC, SEP}, {UNSTEER←,
SEP, UNSTEER→}, {SEP, UNSTEER→, UNSTEER→} and (by symmetry)
{UNSTEER←, UNSTEER←, SEP} all admit network local hidden state models, for
any measurements. That is for any measurements MBB′

b and MCC′
c , the resulting network

assemblage

σADb,c = TrBB′CC′

([
1
A ⊗MBB′

b ⊗MCC′
c ⊗ 1D

]
ρAB ⊗ ρB′C ⊗ ρC′D

)
, (2.3)

can be written in the following network local hidden state form

σADb,c =
∑
α,β,γ

p(α)p(β)p(γ)p(a|β, γ)p(b|α, γ)σAα ⊗ σDβ . (2.4)

for probability distributions p(α), p(β), p(γ), p(a|β, γ), p(b|α, γ), and states σAα , σDβ . This
is captured in Fig. 2.2(b).

Open questions:

• Understanding the role of measurement incompatibility in network steering scenarios.

• Obtaining tight classifications of network local hidden state models in terms of properties
of the sources (separable, unsteerable, local).
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Prior work and concepts:

• Quantum nonlocality in networks [61], for example in the triangle network [62, 63].
Specifically the idea of when network nonlocality is simply standard Bell nonlocality ‘in
disguise’, and when there is some novel phenomena unique to networks.

• Quantum steering [30, 31], and the idea of trusted and untrusted parties, and semi-device
independent quantum information. Furthermore, the idea of encoding all of the relevant
information as sets of sub-normalised states (i.e. steering assemblages).

2.2 Network steering scenarios

A

x

a

γ
B

σa|x

(a)

X

x

β
A

a

γ
B

σa,x

(b)

B

A

C

b c

β α

γ

(c)

A
β

B

b

γ
C

c

α
D

(d)

A
β

B

b

γ
C

(e)

A1

λ1

A2

b2

... An-1

bn-1

λn-1

An

(f)

Figure 2.1: Network steering scenarios. Green circles represent trusted parties, and red squares
represent untrusted parties. (a) Standard steering scenario. (b) Steering scenario without
inputs. (c) Triangle scenario with a trusted party. (d) Triangle scenario interpreted as a line.
(e) Entanglement swapping scenario with trusted endpoints. (f) Generalised line scenario with
trusted endpoints.

Let us introduce our main new notion, that of network steering. Suppose we have a collection
of independent sources which distribute quantum states to a subset of parties. In the standard
network nonlocality scenario all parties are assumed to be untrusted, and to perform ‘black-box’
measurements. Here, in contrast, inspired by the steering scenario, we will consider allowing
some of the parties to be trusted. We refer to this general set-up as network steering.
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Definition 2.1. A network steering scenario is described by a graphical structure, where
nodes represent parties, and edges represent quantum sources shared between the corres-
ponding parties. Each party may be untrusted, meaning that we only assume access to the
resulting output probability distribution, or trusted, representing the ability to perform
full quantum tomography, and hence the resulting output data is a quantum state. In
addition, each untrusted party may receive a classical input, as in the standard nonlocality
case.

We will be interested in the (sub-normalised) states that are prepared for the trusted parties
by the measurements of the untrusted parties. Note that if all the parties are untrusted, the
quantity of interest is the observed statistics p(a, b, . . . |x, y, . . . ), and we recover the standard
notion of network nonlocality. When at least one party is trusted this is replaced by some
collection of quantum states σa,b,...|x,y,.... Let us see a concrete example.

Consider a simple scenario with three parties and two sources (see Fig. 2.1(e)), as in
entanglement swapping [105]. Here the first two parties share a state ρAB and the second and
third parties share a state ρB′C , and the central party performs a fixed measurement MBB′

b .
The sub-normalised states prepared for A and C by this measurement are

σACb = TrBB′

([
1
A ⊗MBB′

b ⊗ 1C
]
ρAB ⊗ ρB′C

)
, (2.5)

which occur with probability p(b) = Tr(σACb ). We will refer to objects such as {σb}b as a network
assemblage.

In order to determine when this network assemblage demonstrates network steering we need
to introduce the notion of a network local hidden state (NLHS) model, which in this case takes
the form

σACb =
∑
β,γ

p(β)p(γ) p(b|β, γ) σAβ ⊗ σCγ , (2.6)

where β and σAβ are the hidden variable and hidden states of the first source, γ and σCγ

those of the second source, and p(b|β, γ) the local response function of Bob. If there is no
such model that can explain the network assemblage σb, then we say it demonstrates network
steering. Interestingly, whereas conventional quantum steering requires multiple measurements
to be performed by the untrusted party, just as with network nonlocality, we shall see here that
even a fixed measurement can suffice to demonstrate network steering.

We now make some basic observations and simplifications about network steering scenarios.
A key observation that will prove useful is the following equivalence between networks, a
generalisation from the network nonlocality case [86].
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Observation 2.2. Any network with an untrusted party A that has an input x, received
with probability p(x), and outcome a, is equivalent to a network with an additional
untrusted party A′ who shares an additional source with A, neither of whom now has an
input. In this new network, the outcome of A′ is x, the old input of A. The relation between
the network assemblages in the first and second scenarios are p(x)σA...a,...|x,... = σAA

′...
a,x,... .

We also note that we can take this additional source to be separable without loss of generality.
That is, in the following scenario, we can take ρAB to be separable without loss of generality.

A

a

ρAB

B

b

. . .

. . .

. . .

Suppose the overall state (or probabilities, if all other nodes are untrusted) is

σa,b,... = TrAB...
(
MA
a ⊗MB...

b ⊗ . . .
[
ρAB ⊗ . . .

])
(2.7)

= TrB...
(
MB...
b ⊗ . . .

[
Tr1

(
Ma ⊗ 1ρAB

)
⊗ . . .

])
. (2.8)

Now set ρ′AB as
ρ′AB =

∑
a′

∣∣a′〉〈a′∣∣⊗ TrA′(Ma′ ⊗ 1ρA′B) (2.9)

which is normalised. Then also set
NA
a = |a⟩⟨a| (2.10)

This gives

TrAB...
(
NA
a ⊗MB...

b ⊗ . . .
[
ρ′AB ⊗ . . .

])
= TrB...

(
MB...
b ⊗ . . .

[
Tr1

(
MaρAB

)
⊗ . . .

])
(2.11)

as before, reproducing the same assemblage/probabilities using a separable state and projective
measurement Na.

Observation 2.3. Endpoint sources between untrusted nodes with no inputs can be taken
to be separable.

By virtue of the fact that quantum mechanics admits local tomography, we can also note
the following:
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Observation 2.4. A trusted party connected to n independent sources can without loss
of generality be replaced by n endpoint trusted parties, each connected to a single source.

This allows us, for example, to interpret linear networks as rings with a single trusted party –
e.g. the four party linear network with trusted endpoints can also be viewed as the triangle
network where one of the parties is trusted, as in Fig. 2.1(c) and Fig. 2.1(d). This observation
motivates our choice to focus our discussion on linear networks, which we understand now to
be relevant for more complex, non-linear networks.

We further remark that in Eq. (2.6), each σACb is in fact separable. Thus the presence of
entanglement in any single σb suffices to rule out an NLHS model, and therefore demonstrates
network steering.

The above generalises in a natural way to the n-party line network depicted in Fig. 2.1(f),
with outcomes b2, . . . , bn−1. We explicitly include the straightforward generalisation of Eq. (2.5)
and Eq. (2.6) as follows.

For n parties, here an observed set of states would be described by

σA1An
b2,...,bn−1

= TrA2A′
2...An−1A′

n−1

([
1
A1 ⊗MA2A′

2
b2

⊗ · · · ⊗MAn−1A′
n−1

bn−1
⊗ 1An

]
× ρA1A2 ⊗ ρA′

2A3 ⊗ · · · ⊗ ρA
′
n−1An

)
. (2.12)

The NLHS condition here generalises to

σA1An
b2,...,bn−1

=
∑

λ1,...,λn−1

p(λ1) . . . p(λn−1)×p(b2|λ1, λ2) . . . p(bn−1|λn−2, λn−1)×σA1
λ1
⊗σAn

λn−1
. (2.13)

Hence we see that the following observation holds generally:

Observation 2.5. For any linear network with trusted endpoints, the entanglement of a
single σb2,...,bn−1 is sufficient to rule out an NLHS model, and thus demonstrate network
steering.

This observation will be important to provide our example of activation in Section 2.3.2, in
which we show that two-way unsteerable states can be used to demonstrate network steering.

2.3 Demonstrating network steering.

2.3.1 Porting existing results from nonlocality and steering

We now begin our exploration of demonstrating network steering, and explain how and when
steerable states will lead to network steering when placed in a network. We consider first the
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scenario of Fig. 2.1(b). If one source distributes a state which is steerable in the standard
steering scenario, then Observation 2.3 would seem to indicate that even if the second source
distributes only separable states (which we will refer to as a separable source), it should still be
possible to use this to encode the “input” to the measurement, and thus demonstrate network
steering. Here we make this intuition precise.

Consider the network scenario depicted in Fig. 2.1(b), with two untrusted parties without
inputs steering a third, leading to a network assemblage σa,x. Here the NLHS condition reads

σa,x =
∑
β,γ

p(β)p(γ) p(x|β)p(a|β, γ)σγ . (2.14)

We can then observe the following:

Lemma 2.6. If σa,x has an NLHS model, then σa|x := σa,x/p(x) has an LHS model, where
p(x) = Tr(∑a σa,x).

Proof. We can write Eq. (2.14) as

σa,x = p(x)
∑
γ

p(γ) p(a|x, γ)σγ (2.15)

where p(x) := Tr(∑a σa,x) = ∑
β p(β)p(x|β) and p(a|x, γ) := 1

p(x)
∑
β p(β)p(x|β)p(a|β, γ). The

result then follows.

This is an analogous result to that proved in [86] relating Bell scenario statistics p(a, b|x, y) to
network nonlocality statistics p(a, b, x, y), the corresponding distribution without inputs. We
link this to the scenario from Fig. 2.1(e) where both endpoints are trusted.

Lemma 2.7. If σb has an NLHS model, then σb,x := Tr1([MA
x ⊗ 1C ]σb) has an NLHS

model, for any measurement Mx.

Proof. When σb has an NLHS model of the form in Eq. (2.6), it follows that

σb,x =
∑
β,γ

p(β)p(γ) Tr(Mxσβ)p(b|β, γ)σγ , (2.16)

which is an NLHS model of the form in Eq. (2.14), with p(x|β) := Tr(Mxσβ).

Putting this together, suppose that ρB′C is steerable, such that σb|x := Tr(Mb|x ⊗ 1ρB
′C)

demonstrates steering for some Mb|x. Let ρAB = ∑
x

1
d |x⟩⟨x| ⊗ |x⟩⟨x| where d is the number of

measurements x, and {|x⟩}x form an orthonormal basis, and Mb = ∑
x′ |x′⟩⟨x′| ⊗Mb|x′ . The

resulting network assemblage σb, from Eq. (2.5), is seen to be

σb =
∑
x

1
d
|x⟩⟨x| ⊗ σb|x. (2.17)
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Now, from the above claims we can see that this must demonstrate network steering. Indeed,
if instead it had an NLHS model, then from Lemma 2.7, σb,x := Tr1(|x⟩⟨x| ⊗ 1Cσb) = 1

dσb|x

would have an NLHS model with p(x) = 1/d. Then, from Lemma 2.6, σb,x would have an LHS
model, but by assumption it does not. This shows that all steerable states can lead also to
network steering when placed in a network with an appropriate separable state. Interestingly,
this occurs even though σb is separable.

Similar arguments apply for showing that in the line with four parties from Fig. 2.1(d), we
can always demonstrate network steering when the central state is nonlocal, and the adjacent
endpoint sources are suitable separable states, providing the inputs. That is, if σb,c has an
NLHS model, then by A and D applying measurements Mx and My the associated probability
distributions p(b, c, x, y) and p(b, c|x, y) necessarily have network local hidden variable (NLHV)
and LHV models respectively (see [86]). So for any nonlocal central source, we can find
appropriate measurements and adjacent separable sources such that σb,c demonstrates network
steering.

2.3.2 Activation

The above constructions of network steering relied on steering or nonlocality in standard
scenarios. Here we show that network steering is possible even when using only (two-way)
unsteerable states, which can be viewed as a form of activation. Note that this complements
previous examples of activation of steering in the standard bipartite scenario [106].

Recall that the erasure channel is given by (see also Eq. (1.101))

Λη(ρ) = ηρ+ (1− η)Tr(ρ) |d⟩⟨d| . (2.18)

For example, this channel acting on a qubit state would result in a qutrit state, where now the
original qubit state ρ is viewed as being embedded in the {|0⟩ , |1⟩} subspace, and loss of the
system is represented by the |2⟩ state.

We define the Doubly-Erased Werner (DEW) state as the two-qubit Werner state (see
Eq. (1.103)) after both subsystems have undergone an identical erasure channel:

ρDEW(η, ω) := Λη ⊗ Λη
(
ω
∣∣ψ−〉〈ψ−∣∣+ (1− ω)14

)
, (2.19)

where |ψ−⟩ = (|01⟩ − |10⟩)/
√

2. ρDEW(η, ω) is entangled when ω > 1
3 (and η ≠ 0) [3], and is

unsteerable (in both directions) when η ≤ 2
3(1− ω). The latter follows from a result in [107],

which states that Λη ⊗ 1ρAB is unsteerable from Alice to Bob (for arbitrary measurements) if

max
x

[
(1− 3η)|a.x|+ 3η

2 (1 + (a · x)2) + ∥Tx∥
]
≤ 1. (2.20)

where a is Alice’s local Bloch vector, T is the bipartite correlation matrix with entries T =
Tr(ρ σi ⊗ σj) for σi the Pauli matrices, and the maximisation is over unit vectors x in
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R3. For ρAB = ρW (ω) = ω |ψ−⟩⟨ψ−| + (1 − ω)1/4 the Werner state, we have a = 0 and
T = diag(−ω,−ω,−ω) and this condition becomes

η ≤ 2
3(1− ω). (2.21)

Now as 1A ⊗ ΩB[ρAB ] is unsteerable from Alice to Bob for any channel Ω if ρAB is unsteerable
from Alice to Bob [108], we have that the the Doubly-Erased Werner (DEW) state

ρDEW(η, ω) := Λη ⊗ Λη
(
ω
∣∣ψ−〉〈ψ−∣∣+ (1− ω)14

)
(2.22)

is unsteerable in both directions for η ≤ 2
3(1− ω).

We also have that in the context of entanglement swapping, projecting |ψ−⟩⟨ψ−| onto two
copies of ρDEW(η, ω) leads to ρDEW(η, ω2) (with probability η2/4), that is to a DEW state with
squared visibility.

Lemma 2.8. Projecting |ψ−⟩⟨ψ−| onto two copies of ρDEW(η, ω) leads to ρDEW(η, ω2), with
probability η2/4. Namely,

TrBC
( [

1A ⊗
∣∣ψ−〉〈ψ−∣∣BC ⊗ 1D] [ρDEW(η, ω)AB ⊗ ρDEW(η, ω)CD

] )
= η2

4 ρDEW(η, ω2)AD
(2.23)

Proof. Expanding out the DEW state gives

Λη ⊗ ΛηρW (ω) =η2ρW (ω) + η(1− η)12
2 ⊗ |2⟩⟨2|

+ η(1− η) |2⟩⟨2| ⊗ 12
2 + (1− η)2 |2⟩⟨2| ⊗ |2⟩⟨2| . (2.24)

Now consider entanglement swapping with projector |ψ−⟩⟨ψ−| (on the {|0⟩, |1⟩} subspace) onto
two DEW states. We can write this as

TrBB′

(
1
A ⊗

∣∣ψ−〉〈ψ−∣∣BB′
⊗ 1C

[
Λη ⊗ ΛηρW (ω)AB

]
⊗
[
Λη ⊗ ΛηρW (ω)B′C

])
(2.25)

= TrBB′

(
1⊗

∣∣ψ−〉〈ψ−∣∣⊗ 1[η2ρW (ω) + η(1− η) |2⟩⟨2| ⊗ 12
2 (2.26)

+ η(1− η)12
2 ⊗ |2⟩⟨2|+ (1− η)2 |2⟩⟨2| ⊗ |2⟩⟨2|

]⊗2)
. (2.27)
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Note that any term with ⟨ψ−| acting on a |2⟩ subspace vanishes, so we can simplify this to

TrBB′

(
1⊗

∣∣ψ−〉〈ψ−∣∣⊗ 1[η4ρW (ω)⊗ ρW (ω) + η3(1− η)ρW (ω)⊗ 12
2 ⊗ |2⟩⟨2|

+ η3(1− η) |2⟩⟨2| ⊗ 12
2 ⊗ ρW (ω) + η2(1− η)2 |2⟩⟨2| ⊗ 12

2 ⊗
12
2 ⊗ |2⟩⟨2|

])
(2.28)

= 1
4

(
η4ρW (ω2) + η3(1− η)12

2 ⊗ |2⟩⟨2| (2.29)

+ η3(1− η) |2⟩⟨2| ⊗ 12
2 + η2(1− η)2 |2⟩⟨2| ⊗ |2⟩⟨2|

)
(2.30)

= η2

4 Λη ⊗ ΛηρW (ω2) (2.31)

= η2

4 ρDEW(η, ω2). (2.32)

In lines Eq. (2.28) - Eq. (2.29) we used the fact that entanglement swapping of two Werner
states leads to another Werner state with the product of the visibilities. Hence entanglement
swapping of two DEW states (with the same erasure parameter and Werner visibility) leads
to another DEW state with the Werner visibility equal to the square of the original Werner
visibility.

Consider now the line network from Fig. 2.1(f) with each source distributing a copy
of ρDEW(η, ω), and all untrusted parties performing the fixed measurement M0 = |ψ−⟩⟨ψ−|,
M1 = 1−|ψ−⟩⟨ψ−|, leading to the network assemblage σb2,...,bn−1 . Now, if we choose η = 2

3(1−ω)
and 1 > ω > (1

3) 1
n , then each DEW is entangled but unsteerable, and we find, due to the

entanglement-swapping property noted above, that the element σ0,...,0 (corresponding to a
successful swap in each case), will be proportional to the state ρDEW(η, ω′) with ω′ > 1

3 , and
therefore entangled. From Observation 2.5, this precludes an NLHS model description, and
therefore demonstrates network steering, even though each DEW state was unsteerable.

2.4 Classes of NLHS models

2.4.1 The simplest scenario

We finish our exploration by considering to what extent the properties of the quantum sources
directly affect the possibility of an NLHS model. We will refer to a source as being separable,
unsteerable or local if it is only capable of generating separable, unsteerable or local states
respectively (also see Section 1.4.9 for definitions here). As an illustrative example, in the
three-party scenario of Fig. 2.1(e) if one source is separable and the other source is unsteerable
(towards the trusted party), then for any fixed central measurement the network assemblage σb
will always be NLHS. Indeed taking ρAB = ∑

γ p(γ)σAγ ⊗ σBγ , and inserting into Eq. (2.5) gives

σb =
∑
γ

p(γ) σAγ ⊗ TrBB′

(
Mb ⊗ 1C

[
σBγ ⊗ ρB

′C
])
. (2.33)
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SEP UNS→

(a)

SEP UNS→ UNS→

←UNS SEP UNS→

SEP LOC SEP

(b)

. . .SEP UNS→ UNS→ UNS→

SEP UNS→ LOC ←UNS SEP

←UNS SEP UNS→ LOC SEP
(⋆)

(c)

Figure 2.2: Classifying the structure of some NLHS models. Green circles represent trusted
parties, and red squares represent untrusted parties who perform a fixed measurement. In the
scenario of Fig. 2.1(e), when one source is separable (SEP), this acts as an input to the
adjacent measurements, and by taking the second source as unsteerable in an appropriate
direction (UNS→) then this always leads to an NLHS model. Similar results hold in the
“unwrapped” triangle scenario (Fig. 2.1(d)) and general line scenarios, where now sources can
also be taken as local, (LOC). The example indicated by (⋆) is discussed in the main text, at
the end of Section 2.4.3.

Defining Mb|γ := TrB(Mbσ
B
γ ⊗ 1C) as a set of valid measurement operators leads us to write

σb =
∑
γ

p(γ) σAγ ⊗ TrB′

(
Mb|γ ⊗ 1C

[
ρB

′C
])
. (2.34)

If ρB′C is unsteerable from B′ to C, this allows us to extract a LHS model, yielding

σb =
∑
γ

p(γ) σAγ ⊗
(∑

λ

p(λ) p(b|λ, γ)σCλ
)

(2.35)

=
∑
γ,λ

p(γ)p(λ) p(b|λ, γ)σAγ ⊗ σCλ , (2.36)

which is an NLHS model (Eq. (2.6)). Hence the combination of a separable and unsteerable
source (to the trusted party) can never lead to network steering, as shown in Fig. 2.2(a).
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2.4.2 The triangle scenario

We can naturally extend this to the line with four parties and trusted endpoints, equivalently
viewing this as the triangle network with a single trusted party (Fig. 2.3(a)).

B

A

C

b c

β α

γ

(a)

A
β

B

b

γ
C

c

α
D

(b)

Figure 2.3: Line scenario with four parties, or alternatively the triangle scenario with a single
trusted party.

Here the quantum description would be

σADb,c = TrBB′CC′

([
1
A ⊗MBB′

b ⊗MCC′
c ⊗ 1D

]
ρAB ⊗ ρB′C ⊗ ρC′D

)
, (2.37)

and the network assemblage σADb,c would admit an NLHS description if it could be written
in the form

σADb,c =
∑
α,β,γ

p(α)p(β)p(γ)p(a|β, γ)p(b|α, γ)σAα ⊗ σDβ . (2.38)

We will now consider how NLHS models can naturally arise by considering properties of
the three sources. If the central source is separable, i.e. ρB′C = ∑

γ p(γ)σB′
γ ⊗ σCγ . Inserting this

into Eq. (2.37) yields

σADb,c = TrBB′CC′

([
1
A ⊗MBB′

b ⊗MCC′
c ⊗ 1D

]
ρAB ⊗ ρB′C ⊗ ρC′D

)
(2.39)

=
∑
γ

p(γ) TrBB′CC′

([
1
A ⊗MBB′

b ⊗MCC′
c ⊗ 1D

]
ρAB ⊗ σB′

γ ⊗ σCγ ⊗ ρC
′D
)

(2.40)

=
∑
γ

p(γ) TrBB′

([
MBB′
b ⊗ 1A

]
ρAB ⊗ σB′

γ

)
⊗ TrCC′

([
MCC′
c ⊗ 1D

]
σCγ ⊗ ρC

′D
)

(2.41)

=
∑
γ

p(γ) TrB
([
MB
b|γ ⊗ 1

A
]
ρAB

)
⊗ TrC′

([
MC′

c|γ ⊗ 1
D
]
ρC

′D
)
, (2.42)

where we defined MB
b|γ := TrB′

(
MBB′
b 1B ⊗ σB′

γ

)
and MC′

c|γ := TrC
(
MCC′
c σCγ ⊗ 1C

′
)

as valid

sets of measurements. Then if ρAB and ρC′D are unsteerable towards A and D respectively (but
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possibly entangled; see Section 1.4.9 and [31]), we can extract a local hidden state (LHS) model
to obtain

σADb,c =
∑
γ

p(γ)
(∑

α

p(α)p(b|α, γ)σAα
)
⊗
(∑

β

p(β)p(c|β, γ)σDβ
)

(2.43)

=
∑
α,β,γ

p(α)p(β)p(γ) p(b|α, γ)p(c|β, γ) σAα ⊗ σDβ , (2.44)

which has exactly the same form as the NLHS condition in Eq. (2.38). Therefore taking ρAB as
separable and ρAB and ρC

′D unsteerable towards A and D respectively, we will always arrive
at an NLHS model, for any intermediate measurements MBB′

b and MCC′
c .

Similarly suppose now that the source ρAB = ∑
α p(α)σAα ⊗ σBα is separable. Then we find

σb,c =
∑
α

p(α) σAα ⊗ TrBB′CC′

([
MBB′
b ⊗MCC′

c

]
σBα ⊗ ρB

′C ⊗ ρC′D
)

(2.45)

If ρC′D is also separable, and ρB
′C is local (in the Bell nonlocality sense, see Section 1.4.9 and

[3]), we get

σb,c =
∑
α,β

p(α)p(β) TrBB′CC′

([
MBB′
b ⊗MCC′

c

]
σBα ⊗ ρB

′C ⊗ σC′
β

)
σAα ⊗ σDβ (2.46)

=
∑
α,β

p(α)p(β) TrBB′CC′

([
MB′

b|α ⊗M
C
c|β

]
ρB

′C
)
σAα ⊗ σDβ (2.47)

=
∑
α,β,γ

p(α)p(β)p(γ) p(b|α, γ)p(c|β, γ)σAα ⊗ σDβ (2.48)

where in the final line we extracted a local hidden variable (LHV) model using the locality of
ρB

′C . Hence taking the central source ρB′C as local, and the adjacent sources as separable will
also always lead to an NLHS model, for any measurements.

Still taking ρAB as separable as in Eq. (2.45), if instead now ρB
′C and ρC′D are unsteerable

towards C and D respectively, we have

σb,c =
∑
α

p(α) σAα ⊗ TrCC′

([
MCC′
c ⊗ 1D

]
TrBB′

([
MBB′
b ⊗ 1C

]
σBα ⊗ ρB

′C
)
⊗ ρC′D

)
(2.49)

=
∑
α

p(α) σAα ⊗ TrCC′

([
MCC′
c ⊗ 1D

]
TrBB′

([
MBB′

b|α ⊗ 1C
]
ρB

′C
)
⊗ ρC′D

)
(2.50)

=
∑
α

p(α) σAα ⊗ TrCC′

([
MCC′
c ⊗ 1D

](∑
γ

p(γ)p(b|α, γ)σCγ
)
⊗ ρC′D

)
(2.51)

=
∑
α,γ

p(α)p(γ) σAα ⊗ p(b|α, γ) TrC′

([
MC′

c|γ ⊗ 1D
]
ρC

′D
)

(2.52)

=
∑
α,γ,β

p(α)p(β)p(γ) p(b|α, γ)p(c|β, γ) σAα ⊗ σDβ (2.53)

also leading to a NLHS model.
We summarise the preceding calculations in the following result.
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A1

λ1
A2

b2

... An-1

bn-1

λn-1
An

Figure 2.4: A general linear network with no inputs and trusted endpoints.

Theorem 2.9. Consider a four party network scenario with trusted endpoints and untrusted
central parties who perform fixed measurements, as in Fig. 2.3(b). Ordering the sources as
{ρAB , ρB′C , ρC′D} and denoting SEP as the set of separable states, LOC as the set of Bell-
local states, and UNSTEER→ as the set of unsteerable states (in the appropriate direction)
we have that {SEP, LOC, SEP}, {UNSTEER←, SEP, UNSTEER→}, {SEP,
UNSTEER→, UNSTEER→} and (by symmetry) {UNSTEER←, UNSTEER←,
SEP} all admit NLHS models, for any measurements.

This result is captured in Fig. 2.2(b). Recalling that there exist entangled yet unsteerable
states, and steerable yet Bell-local states (that is SEP ⊊ UNS→ ⊊ LOC) shows that these
models are indeed non-trivial. Indeed network steering is truly a novel phenomena, and fully
characterising the resources needed to demonstrate it is an open and fascinating new research
question.

2.4.3 General line/ring networks

We can generalise this to an arbitrary line network with trusted endpoints (Fig. 2.4), which
again could be interpreted as a ring network with a single trusted party.

For n parties, here an observed set of states would be described by (repeated from Eq. (2.12))

σA1An
b2,...,bn−1

= TrA2A′
2...An−1A′

n−1

([
1
A1 ⊗MA2A′

2
b2

⊗ · · · ⊗MAn−1A′
n−1

bn−1
⊗ 1An

]
× ρA1A2 ⊗ ρA′

2A3 ⊗ · · · ⊗ ρA
′
n−1An

)
. (2.54)

The NLHS condition here generalises to (repeated from Eq. (2.13))

σA1An
b2,...,bn−1

=
∑

λ1,...,λn−1

p(λ1) . . . p(λn−1)×p(b2|λ1, λ2) . . . p(bn−1|λn−2, λn−1)×σA1
λ1
⊗σAn

λn−1
. (2.55)

We first recall that as stated in Observation 2.5, ∑bi
σb2,...,bn−1 is a product state for any bi,

and so the entanglement of a single σb2,...,bn−1 suffices to demonstrate network steering, being
incompatible with Eq. (2.13).

From the previous calculations for the line with four parties (Eq. (2.39) - Eq. (2.53)), we
see more generally how taking certain sources as separable can introduce natural sufficient
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conditions on the other sources to result in an NLHS model overall. For example if a single
source is separable, then taking all other sources as unsteerable (in the direction away from this
source) leads to an overall NLHS model for a line of any length – this is a generalisation from
the above Eq. (2.49) to Eq. (2.53). Similarly, if a given source is unsteerable then upon receiving
some input (for example from an adjacent separable source), the resulting LHS assemblage can
serve as an input to the next party. This idea of “percolation of inputs ” allows to write down a
large class of NLHS models, for arbitrary linear networks.

As a small example, we discuss the scenario in Fig. 2.2(c) marked with (⋆). The separable
source second from the left provides an input to the adjacent sources, from which arises natural
steering assemblages such as Tr(MB′

b|λ ⊗ 1
CρB′C). If these adjacent sources are steerable in the

appropriate direction, we can extract an LHS model, whose corresponding state assemblages
can act as an input to the next party. As the parties second and third from the right now receive
effective inputs, the relevant condition on the second source from the right to admit a local
model is of locality. Therefore taking the sources as described would lead to an overall NLHS
model for any measurements performed. These type of arguments would hold more generally
for arbitrary linear network structures.

2.5 Conclusions

We have introduced the notions of network steering and network local hidden state models.
We discussed illustrative examples, and showed that the network scenario leads to a form of
activation of steering. Finally, we have started a characterisation of NLHS models based solely
upon properties of the sources. There are many fascinating and novel future questions to tackle.

First, it would be interesting to determine if either NLHS assemblages or the full set of
network assemblages can be characterized via techniques based on semi-definite programming,
using for instance the approach of [95]. A related direction is to further classify NLHS models
based on the properties of the sources. For instance, consider four parties sharing separable,
local and unsteerable sources, or five parties sharing separable, local, local, and separable sources.
In neither of these cases do we currently know if network steering can arise or not.

Here we have focused primarily on the properties of the sources, but it would also be
interesting to consider the measurements, and understand which of their properties (e.g.
entanglement or incompatibility) are relevant for network steering. In particular, as it is known
that measurement incompatibility is required to witness standard nonlocality and steering,
it is at present not clear how this resource manifests itself in the network setting, in which
non-classical correlations can arise when the parties each perform a single fixed measurement.

Future work could also consider the significance for quantum repeaters [83], explore links
with superactivation of quantum steering [106], or extend recent work on post-quantum steering
[109] to this setting.
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Finally, our initial motivation for this work was to attempt to gain clarity on network
nonlocality problems, such as those in the triangle network [61, 62]. It is our hope that developing
our framework further will lead to discovering novel nonlocal correlations, unique to networks.
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High dimensional measurement incompatibility

Chapter Summary

We introduce a notion of compression for a set of quantum measurements, which can be
thought of as a quantifier of measurement incompatibility in terms of dimension. We make
several direct connections to the recently introduced concept of genuine high-dimensional
quantum steering, which relates to certifying the Schmidt number of bipartite state when
only one of the parties is trusted (also referred to as a one-sided device independent scenario).
Our two main connections are that high-dimensional measurements are necessary to witness
genuine high-dimensional steering, and then by exploiting a known connection between
measurement incompatibility and quantum steering, we show that these concepts are in
fact mathematically equivalent, using the machinery of channel-state duality. Finally, we
discuss further connections and implications for classes of quantum channels.

This chapter is based on the following publications (primarily the former):
Benjamin DM Jones, Roope Uola, Thomas Cope, Marie Ioannou,

Sébastien Designolle, Pavel Sekatski, and Nicolas Brunner.
Equivalence between simulability of high-dimensional measurements

and high-dimensional steering.
Physical Review A, 107(5):052425, 2023.

Marie Ioannou, Pavel Sekatski, Sébastien Designolle,
Benjamin DM Jones, Roope Uola, and Nicolas Brunner.

Simulability of high-dimensional quantum measurements.
Physical Review Letters, 129(19):190401, 2022.

Relevant background: measurement incompatibility (Section 1.4.3), channel state duality
(Section 1.4.1), high-dimensional entanglement (e.g. Schmidt number and n-partially entangle-
ment breaking channels – Section 1.4.2), quantum nonlocality and steering (Section 1.4.4 and
Section 1.4.5), and miscellaneous states and channels (Section 1.4.9): such as separable and
unsteerable states, and incompatibility breaking channels.

53



CHAPTER 3. HIGH DIMENSIONAL MEASUREMENT INCOMPATIBILITY

Page

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.1.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 A new definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 High-dimensional steering and simulability of measurements . . . . . . . . . . . 60
3.4 Quantum channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6 Acknowledgements and contributions . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1 Introduction

High-dimensional quantum systems feature a number of interesting phenomena, beyond what
is possible for qubit systems. For example, the effect of entanglement is known to become
increasingly robust to noise when higher dimensions are considered [110, 111]. In turn, the
nonlocal correlations obtained from measurements on high-dimensional systems also feature
significantly increased robustness. Indeed, these effects offer interesting perspectives for quantum
information processing, allowing, e.g. for quantum communications over very noisy channels.

In this chapter, we consider the effect of genuine high-dimensional steering (GHDS), which
has been recently introduced [112]. The original formulation of quantum steering (see Sec-
tion 1.4.5) encapsulates the essence of the Einstein-Podolsky-Rosen paradox. This aspect has
been demonstrated in various works, such as [113–116]. A possible quantum information inter-
pretation of this phenomenon is given via certification of entanglement between an untrusted
party (Alice) and a trusted one (Bob) [117]. Hence steering is sometimes referred to as being a
one-sided device-independent (SDI) entanglement detection protocol. The key point of GHDS is
to go beyond entanglement detection by certifying the minimal dimensionality of entanglement
(specifically the Schmidt number) required for producing the observed correlations in a SDI
scenario. More formally, this approach introduces the notion of n-preparable assemblages, i.e.
those assemblages being preparable based on any possible entangled state of Schmidt rank at
most n; 1-preparable assemblages being then simply those assemblages that cannot demon-
strate steering. Next, one can construct a steering inequality for n-preparable assemblages,
the violation of which implies the presence of genuine (n+ 1)-dimensional steering. This was
demonstrated in a quantum optics experiment (based on photon-pairs entangled in orbital
angular momentum) reporting the SDI certification of 14-dimensional entanglement [112].

A natural question at this point is to understand what are the resources required in terms
of measurements for demonstrating GHDS. Indeed, the effect of steering uses not only an
entangled state as a resource, but also a well-chosen set of local measurements for Alice.
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The latter must be incompatible, but it turns out that steering has a direct connection to
measurement incompatibility [51, 118–120] – see also Section 1.4.5.1.

The present chapter explores this question, and establishes a general connection between
GHDS and the notion of n-dimensional simulability (or n-simulability) of high-dimensional
measurements which has been recently introduced in [18]. This notion generalises the concept
of joint measurability and provides a quantification of measurement incompatibility in terms of
a dimension. The connection we uncover generalises the well-known relations between quantum
steering and joint measurability. Moreover, we also extend the connection to quantum channels,
in particular the characterisation of their high-dimensional properties. These general tripartite
connections between high-dimensional steering, measurements and channels, allow for results of
one area to be directly translated in others, which we illustrate with several examples. See also
Fig. 3.1 for illustrations of these concepts.
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Figure 3.1: Concepts and connections that appear in this chapter. (a) Quantum steering
scenario. (b) A set of measurements is n-simulable if they can be replaced by an n-partially
entanglement breaking channel (n-PEB) followed by some measurements. (c) Illustration of the
Schmidt number (SN) of a bipartite state (repeated from Fig. 1.1): the state of two 5 level
systems is a combination of states with only qubit entanglement, hence the overall state has
SN at most 2.

3.1.1 Summary of results

Main conceptual contributions:

• We introduce a new definition of high-dimensional measurement incompatibility for a set
of measurements, which can also be viewed as a form of compression.

• We show that this definition is equivalent to high-dimensional quantum steering.

• We introduce n-partially incompatibility breaking channels and characterise their Choi
states.
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Main technical calculations:

Theorem 3.5 Consider a steering assemblage σa|x and measurements Ma|x such that
Ma|x = ρ

− 1
2

B σa|x ρ
− 1

2
B , where ρB := ∑

a σa|x is a quantum state of full rank. Then Ma|x is
n-simulable if and only if σa|x is n-preparable. That is, Ma|x can be written as Λ∗(Na|x)
for some n-PEB channel Λ and measurements Na|x, if and only if σa|x can be written as
Tr1(N ′a|x ⊗ 1 ρ) for some state ρ of Schmidt number n and measurements N ′a|x.

Theorem 3.7 Let En be the set of states with Schmidt number at most n, Sn be the
set of of n-simulable measurements assemblages, and Pn the set of n-preparable steering
assemblages. For some set of objects O (e.g. states, measurements, channels, assemblages)
and free set F define the weight as

WF (x) := min λ (3.1)

s.t. x = (1− λ)y + λz (3.2)

y ∈ F (3.3)

z ∈ O. (3.4)

Given an assemblage σa|x = Tr1(Ma|x ⊗ 1 [ρAB]), we then have the following inequality:

WPn(σa|x) ≤ WSn(Ma|x)WEn(ρAB). (3.5)

Open questions:

• Exploring the nonlocality case, for example the characterisation of quantum channels
with Choi state of FDI-SN n.

Prior work and concepts:

• High dimensional entanglement: quantifying entanglement dimensionality via the Schmidt
rank (for pure states) the Schmidt number (for mixed states) [53], and n-partially
entanglement breaking channels [121].

• High dimensional steering [112]: the idea of a steering assemblage not only being able to
certify that the underlying state is entangled, but that it has Schmidt number at least n.
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• Measurement incompatibility, and connections with steering: specifically the equivalence
between an assemblage being LHS and the corresponding set of POVMs being compatible
[31, 120].

• Notions of compression for sets of measurements, see for example the work of Andreas
Bluhm [122–124] and references therein. As a specific example, in [122] a related notion
of ‘n-compressibility’ of a set of quantum measurements is proposed, whereby the set of
measurements must be preserved under first passing through a ‘compression channel’ to a
space of lower dimension, followed by a ’decompression channel’ back to the original space.
A notable distinction between their definition and the one presented in this chapter is that
in [122] a single measurement may have a compression dimension strictly greater than 1,
whereas for us all individual measurements have compression dimension (or simulability
dimension) equal to 1, which is a intended generalisation of the fact that any single
measurement is jointly measurable (1-simulable, in our language).

3.2 A new definition

Loosely speaking, we say that a set of measurements Ma|x, defined on a Hilbert space of
dimension d, is said to be n-simulable when the statistics of this set of measurements on any
possible quantum state can be exactly recovered using a form of compression of quantum
information to a lower n-dimensional space. Our main motivation is to use the existing
connections between measurement incompatibility and steering to translate results across about
high-dimensional steering, which we now discuss.

In [112], the concept of genuine high-dimensional steering (GHDS) was introduced, where
one asks whether a given assemblage σa|x can be produced using a bipartite state ρAB of Schmidt
number at most n, in which case we term the assemblage n-preparable. In this framework, an
assemblage is LHS if and only if it is 1-preparable, as any separable state leads to an LHS
assemblage and any LHS assemblage can be prepared with some separable state [125, 126].
Hence if an assemblage is not n-preparable, this guarantees that the underlying state ρAB is of
Schmidt number at least n+1. This represents a SDI certification of entanglement dimensionality,
illustrated in a recent quantum optics experiment certifying up to 14-dimensional entanglement
[112].

So far, the focus of GHDS is on the dimensionality of the shared entangled state. There
is however another resource that is crucial for observing quantum steering, namely the set of
measurements performed by Alice, which must be incompatible. More generally, there exist
in fact a deep connection between measurement incompatibility (in the sense of being not
jointly measurable) and quantum steering [118–120]. In particular, this implies that any set
of incompatible measurements for Alice can be combined with an appropriate state ρAB for
demonstrating steering.
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This naturally raises the question of what are the necessary resources in terms of measure-
ments for demonstrating GHDS. Intuitively, the latter should also require a minimal “dimen-
sionality” for the set of measurements. below we will make this intuition precise, by using the
concept of n-simulability of a set of measurements. More generally, we will establish a deep
connection between GHDS (more precisely the notion of n-preparability of an assemblage)
and n-simulability of set of measurements. This generalises the previously known connection
between steering and measurement incompatibility.

To provide concrete motivation, consider a steering scenario in which the underlying
distribution can be achieved with a state of at most Schmidt number n. That is

σa|x = Tr1(Ma|x ⊗ 1 ρ) (3.6)

for some measurements Ma|x and and SN(ρ) ≤ n. Recall that we can write any state of Schmidt
number at most n as

ρ = Λ⊗ 1τ (3.7)

for Λ n-PEB and some τ (in fact, we can take Λ as the Choi channel of ρ in generalised channel
state duality – see Section 1.4.1).

Using the Heisenberg picture we can write this as

σa|x = Tr
(
Ma|x ⊗ 1 ρ

)
(3.8)

= Tr
(
Ma|x ⊗ 1 Λ⊗ 1τ

)
(3.9)

= Tr
(
Λ∗(Ma|x)⊗ 1 τ

)
(3.10)

where Λ∗(Ma|x) defines a new set of POVMs. Hence we can immediately see that if either
of the measurements used in a Bell scenario or steering scenario can be written in the form
Λ∗(Ma|x) for Λ n-PEB and arbitrary Ma|x, then the resulting distribution/assemblage will be
n-preparable. This motivates our new definition:

Definition 3.1. A set of measurements Ma|x is said to be n-simulable if there exists an
n-PEB channel Λ and a set of arbitrary measurements Na|x such that

Ma|x = Λ∗(Na|x) (3.11)

It turns out that this definition is equivalent to a notion of compression, as originally
introduced in [18]. Consider for example Alice (e.g. on the Moon), sending an arbitrary state
ρ to a distant party Bob (e.g. on Earth), who will perform a set of POVMs Ma|x. Which
POVM Bob performs depends on some input x. The expected (target) data is given by
p(a|x, ρ) = Tr

(
Ma|xρ

)
. As resource, we consider here the dimensionality of the quantum

channel between Alice and Bob, while a classical channel is always available for free. The goal
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is then to compress as much as possible the initial state of Alice, in order to use a quantum
channel with minimal dimension, while still recovering exactly the target data. More formally,
we demand that

Ma|x =
∑
λ

Λ∗λ(Na|x,λ) (3.12)

where Λ = {Λλ}λ denotes the instrument (compressing from dimension d to n), with classical
output λ, and Na|x,λ is a set of n-dimensional POVMs performed by Bob upon receiving the
input x and the classical information λ communicated by Alice. Here Λ∗λ refers to the Heisenberg
picture of Λλ.

Proposition 3.2. A set of d-dimensional measurements Ma|x is n-simulable if and only if
there exists a quantum instrument Λλ mapping from dimension d to n, such that

Ma|x =
∑
λ

Λ∗λ
(
Na|x,λ

)
(3.13)

See [18] for the proof.
An important case is 1-simulability, i.e., when the full quantum information can be com-

pressed to purely classical one. This is possible if and only if the set of POVMs is jointly
measurable, i.e., Ma|x = ∑

λ p(a|x, λ) Gλ, for some probability distribution p(a|x, λ) and a
“parent” measurement Gλ, see [33, 127] for reviews on the topic. To see this, one can note
that instruments with a 1-dimensional output space are POVMs on their input space, and
POVMs on a 1-dimensional space are probability distributions. A set of POVMs that is not
jointly measurable (hence called incompatible), can nevertheless be n-simulable, for some n
with 2 ≤ n ≤ d.

Remark 3.3. Ma|x is 1-simulable if and only if it is jointly measurable.

We note that although we may talk about high-dimensional properties of measurements, we
do always mean properties of sets of measurements. This is due to the fact that any POVM is
jointly measurable with itself and, hence, a trivial pair of measurement and itself is 1-simulable.

In the rest of the chapter, we will first establish precisely the connection between n-
preparability and n-simulability. Finally, in the last section of the chapter, we will also extend
the connection to quantum channels and their characterisation in terms of dimension. This
will provide a full tripartite connection, for characterising dimension in steering assemblages,
incompatibility of sets of measurements, and quantum channels.
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3.3 High-dimensional steering and simulability of
measurements

In this section, we present in detail the structural connection between n-preparability of steering
assemblages and n-simulability of sets of measurements.

We start with a first result clearly identifying the resource for GHDS. More precisely, the
following theorem implies that observing GHDS, i.e., an assemblage which is not n-preparable,
implies that (i) the shared entangled state ρAB has at least Schmidt number n+ 1, and (ii) the
set of measurements {Ma|x} performed by Alice is not n-simulable. In other words, one really
needs both high-dimensional entanglement and high-dimensional measurement incompatibility
to witness genuine high-dimensional steering.

More formally we can prove the following.

Theorem 3.4. If Ma|x is n-simulable or ρAB has Schmidt number at most n, then the
assemblage

σa|x := Tr1

(
Ma|x ⊗ 1 [ρAB]

)
(3.14)

is n-preparable.

Proof. If ρAB has SN at most n, this simply follows from the definition of n-preparability. Now
suppose that Ma|x is n-simulable. Then there exists a n-PEB channel Λ and measurements
Na|x such that Ma|x = Λ∗(Na|x). By the definition of the dual, we can hence write

σa|x = Tr1
(
Λ∗(Na|x)⊗ 1[ρAB]

)
(3.15)

= Tr1
((
Na|x ⊗ 1

)(
Λ⊗ 1

)
[ρAB]

)
(3.16)

and as Λ is n-PEB, then Λ⊗ 1[ρAB] has SN at most n, so σa|x is n-preparable.

Our next result establishes a general equivalence between any n-preparable assemblage and
a set of POVMs that is n-simulable, and vice versa. The main idea is that a set of quantum
measurements Ma|x and a steering assemblage σa|x are very similar types of mathematical
objects: both are composed of positive semi-definite matrices, and ∑aMa|x = 1 ∀x whereas∑
a σa|x will be equal to some fixed state ρB = Tr1(ρAB) for all x. A direct connection can

be established, namely that σa|x is LHS if and only if ρ−1/2
B σa|xρ

−1/2
B is jointly measurable

(when interpreted as a set of measurements) [120]. The theorem below can be considered a
generalisation of this result, in the sense that the proof of [120] corresponds to the case n = 1.
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Theorem 3.5. Consider a steering assemblage σa|x and measurements Ma|x such that
Ma|x = ρ

− 1
2

B σa|x ρ
− 1

2
B , where ρB := ∑

a σa|x is of full rank. Then Ma|x is n-simulable if and
only if σa|x is n-preparable.

Proof. Let Na|x be a measurement assemblage and ρAB be a state such that Tr1(ρAB) = ρB.
Let (·)T denote the transpose with respect to an eigenbasis of ρB. We then have the following
equivalences

σa|x = Tr1(Na|x ⊗ 1 ρAB) (3.17)

⇐⇒ Ma|x = ρ
− 1

2
B Tr1(Na|x ⊗ 1 ρAB) ρ−

1
2

B (3.18)

⇐⇒ MT
a|x = ρ

− 1
2

B Tr1(Na|x ⊗ 1 ρAB)T ρ−
1
2

B (3.19)

⇐⇒ MT
a|x = Λ∗ρAB

(
Na|x

)
, (3.20)

where in the third line we used the fact that (ρ−
1
2

B )T = ρ
− 1

2
B , as the transpose is taken in an

eigenbasis of ρB, and in the last line we have invoked the form of channel-state duality from
[51], see also Section 1.4.1.

Now observe that the existence of a state ρAB in the above with Schmidt number at most n is
equivalent to σa|x being n-preparable. We can also see that there exists ρAB with SN(ρAB) ≤ n
if and only if MT

a|x is n-simulable, as such a state corresponds to ΛρAB being n-PEB (see
Lemma 1.23). To finalise the proof we must show that Ma|x is n-simulable if and only if MT

a|x
is n-simulable. This can be seen as follows. First note that MT

a|x defines a valid collection of
measurements. Suppose that Ma|x = Λ∗(Na|x) with Λ n-PEB and Na|x arbitrary measurements.
Then letting T denote the transpose map, we have that MT

a|x = (T ◦Λ∗)(Na|x) = (Λ◦T ∗)∗(Na|x).
As Λ is n-PEB, Λ ◦ T ∗ is also n-PEB. Hence MT

a|x is n-simulable. The converse direction follows
from (MT

a|x)T = Ma|x.

As a technical remark, note that as for any a and x the support of σa|x is contained within
the support of ρB = ∑

a σa|x (this follows as σa|x are all positive semi-definite), we can still
invoke the above theorem in the case where ρB is not full rank, by restricting σa|x to the support
of ρB.

Theorem 3.5 also allows to prove the following result, which complements Theorem 3.4. This
shows that for any set of POVMs that is not n-simulable, one can always find an entangled state
such that the resulting assemblage is not n-preparable. Again, this generalizes some previous
results stating that any incompatible set of POVMs can lead to steering [118, 119], which
corresponds to the case n = 1 of the proposition below.
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Proposition 3.6. If Ma|x is not n-simulable, then the assemblage

σa|x := Tr1

(
Ma|x ⊗ 1

∣∣∣Φ+
〉〈

Φ+
∣∣∣ ) (3.21)

is not n-preparable, where
∣∣Φ+〉 = 1√

d

∑d−1
i=0 |ii⟩.

Proof. We have that

σa|x = Tr1

(
Ma|x ⊗ 1

∣∣∣Φ+
〉〈

Φ+
∣∣∣ ) = 1

d
MT
a|x. (3.22)

By the proof of Theorem 3.5, if Ma|x is not n-simulable, then MT
a|x is not n-simulable. Then

invoking Theorem 3.5 with ρB = 1
d , we have that that σa|x is not n-preparable.

In the final part of this section, we show that the trade-off between high-dimensional
entanglement, high-dimensional measurement incompatibility, and high-dimensional steering
can be made quantitative. For this, we use a specific resource quantifiers known as the convex
weight [128]. Consider for example the quantification of entanglement via the weight. For any
entangled state ρ, we can measure its entanglement through its weight (see Section 1.4.7), given
by the following quantity

WF (ρ) := minλ

s.t. ρ = (1− λ)ρsep + λσ,
(3.23)

where the minimisation runs over any state ρsep that is separable, and σ an arbitrary state. As
expected, WF (ρ) = 0 when ρ is separable. More generally, this quantifier can apply to objects
such as states, measurements or steering assemblages, with respective free sets En: the set of
states with Schmidt number at most n, Sn: the set of of n-simulable measurements assemblages,
and Pn: the set of n-preparable steering assemblages. We can now state our next result, which
quantitatively illustrates the necessity of high-dimensional measurement incompatibility and
entanglement for GHDS:

Theorem 3.7. Given an assemblage σa|x = Tr1(Ma|x ⊗ 1 [ρAB]), we have the following
inequality:

WPn(σa|x) ≤ WSn(Ma|x)WEn(ρAB). (3.24)

For the case n = 1 we get a quantitative connection among steering, measurement
incompatibility and entanglement.

Proof. We first note that the sets En, Sn and Pn are all convex, which can be readily verified
(see for example Refs. [53, 129]).
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σa|x = Tr1[(Ma|x ⊗ 1)ρAB] (3.25)

= [(1−WSn(Ma|x)]WEn(ρAB)τ (1)
a|x (3.26)

+WSn(Ma|x)[1−WEn(ρAB)]τ (2)
a|x (3.27)

+ [1−WSn(Ma|x)][1−WEn(ρAB)]τ (3)
a|x (3.28)

+WSn(Ma|x)WEn(ρAB)κa|x, (3.29)

where τ (i)
a|x is an n-preparable state assemblage for i = 1, 2, 3 and κa|x is an arbitrary assemblage.

The fact that τ (i)
a|x are all n-preparable follows directly from Theorem 3.4. Now note that the

coefficients of the first three terms sum to 1−WSn(Ma|x)WEn(ρAB), hence we can write the
sum of these first three terms as

(1−WSn(Ma|x)WEn(ρAB))τa|x (3.30)

where τa|x is a convex combination of τ (1)
a|x , τ (2)

a|x and τ (3)
a|x , and hence is itself n-preparable. Putting

this together, we have that

σa|x = (1−WSn(Ma|x)WEn(ρAB))τa|x (3.31)

+WSn(Ma|x)WEn(ρAB)κa|x, (3.32)

so we see that WSn(Ma|x)WEn(ρAB) is a feasible solution for the convex weight of σa|x with
respect to Pn. As the convex weight is a minimisation the inequality

WPn(σa|x) ≤ WSn(Ma|x)WEn(ρAB). (3.33)

follows.

3.4 Quantum channels

An important superset of entanglement breaking channels is that of incompatibility breaking
channels [54], which are channels Λ such that Λ∗(Ma|x) is jointly measurable for any Ma|x.
Via channel-state duality these channels correspond respectively to separable and unsteerable
states (where the direction of steerability corresponds to whether the channel is applied on
the first or second system in the definition of channel-state duality). The connections between
high-dimensional steering, n-simulability and n-PEB channels motivate the following definition:

Definition 3.8. A channel Λ is n-partially incompatibility breaking (n-PIB) if for
any measurement assemblage Na|x the resulting measurement assemblage Λ∗(Na|x) is
n-simulablea.

aWe note that our definition here is different to the notion of n-incompatibility breaking channels
defined in [54], which denotes channels who break the incompatibility of any n observables.
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Hence, just as Λ ⊗ 1 maps all bipartite states to states with Schmidt number n for Λ a
n-PEB channel, an n-PIB channel maps any measurement assemblage to an n-simulable one
(in the Heisenberg picture). We can also gain insight from considering the structure of n-PIB
channels and their relation to n-PEB channels. Unpicking Definition 3.8, for Λ to be n-PIB we
require that for all measurement assemblages Na|x, there exists an n-PEB channel Ω and a set
of measurements Ma|x such that

Λ∗(Na|x) = Ω∗(Ma|x). (3.34)

Therefore, by simply taking Ω := Λ and Ma|x := Na|x in Eq. (3.34), we immediately arrive at
the following result:

Proposition 3.9. Every n-PEB channel is n-PIB.

It is illuminating to consider the corresponding Choi states. For n-PEB channels, the Choi
states are exactly the states with Schmidt number n [121]. For n-PIB channels, we have the
following result:

Theorem 3.10. Λ is n-PIB if and only if ρΛ only leads to n-preparable assemblages.

Proof. Let σ = Tr1(ρΛ) fix the channel-state correspondence. Suppose Λ is n-PIB, that is, for
all measurements Na|x, we have that Λ∗(Na|x) is n-simulable. By Theorem 3.5, this is equivalent
to σ 1

2 Λ∗(Na|x)Tσ 1
2 being n-preparable for all Na|x. Via channel-state duality, this is equivalent

to
Tr1(Na|x ⊗ 1ρ) (3.35)

being n-preparable for all Na|x.

The result of the above theorem is put into context of other similar connections between a
channel and its Choi state in Table 3.1.

3.5 Conclusions

We have uncovered deep connections between high-dimensional versions of quantum steering,
measurement incompatibility, and quantum channels, and demonstrated how a rich transfer
of information is possible between these areas. In particular, we showed that the concept of
n-simulability for sets of POVMs is equivalent to n-preparability for state assemblages in
steering. This generalises the well-known connection between steering and joint measurability,
which simply corresponds here to the case n = 1.
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Channel State Reference

Entanglement breaking Separable [28]

Incompatibility breaking Unsteerable [51, 54]

n-PEB SN n [53, 121]

n-PIB SDI-SN n Theorem 3.10.

Table 3.1: Connections between channels and their Choi states. Our work naturally extends
this picture by generalising both incompatibility breaking channels and unsteerable states in
terms of dimension, and proving that they directly correspond to each other through
generalised channel state-duality. SDI-SN n refers to when a state can only lead to
n-preparable steering assemblages, or equivalently a staet for which one can only certify a
Schmidt number of n in a semi-device independent scenario.

We identified the resources required for observing GHDS, in particular that both high-
dimensional measurements and high-dimensional entanglement are necessary. In the light of
these results, we conclude that the experiment of [112] also demonstrates measurements in
pairs of MUBs that are highly incompatible, in the sense that are they not 14-simulable.

A natural further question would be to explore these questions in the context of nonlocality
[3], which can be thought of as a fully-device independent (FDI) regime. Analogously to the
steering case, one could define a behaviour p(a, b|x, y) to be n-preparable if it could have arisen
from a shared state of Schmidt number at most n, and define a state to have fully-device
independent Schmidt number n (FDI-SN n) if it can only lead to n-preparable behaviours.
This is related to [130], where the authors introduce the concept of dimension witnesses to
lower bound the dimension of the underlying state. One can quickly see in this scenario that if
either of the two parties use n-simulable measurements, then the resulting behaviour will be
n-preparable. Similarly, any measurements on an n-preparable assemblage can only result in an
n-preparable behaviour. However, it is less clear how one could characterise the corresponding
channels whose Choi states have FDI-SN n. In the steering case we were able to exploit and
generalise known connections with measurement incompatibility, but it seems that new tools
may be needed to attack this problem in the fully device independent regime.
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The Hadamard gate cannot be replaced by a

resource state in universal quantum computation

Chapter Summary

We consider models of quantum computation that involve operations performed on
some fixed resourceful quantum state. Examples that fit this paradigm include magic state
injection and measurement-based approaches. We introduce a framework that incorporates
both of these cases and focus on the role of coherence (or superposition) in this context, as
exemplified through the Hadamard gate. We prove that given access to incoherent unitaries
(those that are unable to generate superposition from computational basis states, e.g. CNOT,
diagonal gates), classical control, computational basis measurements, and any resourceful
ancillary state (of arbitrary dimension), it is not possible to implement any coherent unitary
(e.g. Hadamard) exactly with non-zero probability. We also consider the approximate case
by providing lower bounds for the induced trace distance between the above operations and
n Hadamard gates. To demonstrate the stability of this result, this is then extended to a
similar no-go result for the case of using k Hadamard gates to exactly implement n > k

Hadamard gates.

This chapter is based on the following preprint:

Benjamin DM Jones, Paul Skrzypczyk, and Noah Linden.
The Hadamard gate cannot be replaced by a resource state

in universal quantum computation.
arXiv preprint arXiv:2312.03515, 2023.

Relevant background: resource theories (Section 1.4.7), stabilisers, Cliffords and magic
(Section 1.4.6).
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4.1 Introduction

The more peculiar aspects of quantum mechanics, such as entanglement [76] and incompatibility
of measurements [32], continue to fascinate researchers and motivate a deeper understanding of
this cornerstone of physics. It is also remarkable that quantum theory appears to provide a
computational speed-up for certain problems over what is possible with classical physics [20].
The quest to fully understand and quantify which aspects of quantum theory are needed for
useful quantum algorithms is a pressing and exciting current area of research.

There are various ways of performing universal quantum computation: examples include
the circuit model [20], measurement based approaches [37], magic state injection [39], quantum
annealing [132], and continuous variable models [133]. An interesting perspective is to consider
approaches involving “free” operations (i.e. easy to perform in some sense) acting on a resourceful
state that is prepared independently of the computation. By focusing on this supplementary state,
one could hope to gain insight into which components of quantum mechanics are responsible
for the computational classical-quantum boundary.
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The most widely studied universal gate set is the Clifford + T gate set; recall that the
Clifford group is generated by the single qubit Hadamard (H) and phase (S) gates and the
two-qubit controlled-NOT (CNOT) gate (see also Section 1.4.6 for background). The gate set of
CNOT, T and Hadamard is also universal, and can be thought of as respectively supplying the
resources of entanglement, magic (or non-stabiliserness) and coherence (or superposition). In
magic state injection (MSI), one implements a T gate by performing adaptive Clifford operations
on the input state and an ancillary state |T ⟩ := T |+⟩. Here the operations performed are free
with respect to the resource of magic, and all of the magic required is contained in the pool of
|T ⟩ states. This approach is motivated by error correction and fault tolerance schemes [39].

In contrast, measurement based quantum computation (MBQC) proceeds by adaptively
performing single qubit measurements on an entangled resource state, such as a cluster state
[134]. In this scenario, the resource of entanglement is present only in the state, and again the
operations are free with respect to this resource. The ability to perform computational basis
measurements (i.e. measure in the Z basis) and apply H, S and T gates also implies ability to
measure in the X, Y and TXT † bases, which is sufficient for universality [135].

From these examples, a natural question arises of where we can put the ‘cut’ between
operations and states whilst retaining the ability to perform universal quantum computation
– see Fig. 4.1. For example when considering the Clifford + T gate set, can one replace the
Hadamard with access to some resourceful state, and still maintain universality? We provide
no-go results in this direction.

In more generality one can consider whether this cut is possible for an arbitrary quantum
resource theory [35]. As Hadamard is the only gate within Clifford + T capable of generating
superpositions from computational basis states, the relevant resource theory here is that of

(a) Universal gate set. (b) MSI. (c) MBQC. (d) This chapter.

Figure 4.1: (a) A universal set of quantum gates: Hadamard (H), Phase (S), T , and
controlled-NOT. (b) Magic state injection: each T gate can be implemented using Clifford
operations and a |T ⟩ state. (c) Measurement based quantum computation: if CNOT is removed
from this gate set one can still perform universal quantum computation using an appropriately
entangled resource state |G⟩, such as a cluster state. (d) We ask whether one can similarly
replace the Hadamard gate with some resourceful state |γ⟩ and still achieve universality – we
show that this is not possible. In all cases we allow computational basis measurements and
classical control. Also note that the case of removing S is trivial as T 2 = S.
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coherence [34]. Our findings show that some coherence is required in the operations to achieve
universality, providing a stark contrast with the resource theories of magic and entanglement.

4.1.1 Summary of results

We provide no-go results on the possibility of performing universal quantum computation using
operations unable to generate superpositions, even given access to an arbitrary state. A unitary
that maps at least one computational basis state to a superposition of two or more basis states
is termed coherent, otherwise it is incoherent. Our findings can be informally summarised
as:

Incoherent
unitaries + classical

control + computational basis
measurements + arbitrary

ancillas

cannot implement coherent unitaries (e.g. Hadamard).

Main conceptual contributions:

• We provide a unified framework from which to consider models of quantum computation
that involve free operations acting on some fixed resourceful state.

• We give evidence that any model of quantum computation must involve the resource
of coherence in the operations (exemplified by the Hadamard gate). That is, coherence
cannot be siphoned off to some supplementary state, unlike in the cases of magic in magic
state injection or entanglement in measurement based quantum computation.

Main technical calculations:
Recall that the dephasing map ∆ sets all off-diagonal terms of the density matrix in the

computational basis to zero, and the trace distance is defined as D(ρ, σ) = 1
2∥ρ− σ∥1.

Lemma 4.15 (informal). If a channel E commutes with the dephasing map ∆, then
for any state |γ⟩ the induced channel ρ 7→ E(ρ⊗ |γ⟩⟨γ|) cannot implement any coherent
unitary.

This generalises an observation made in [136] (an erratum to [137]) that shows a similar
result for qubits.

Our second main technical result is a robust extension of this to the approximate case, when
specifically considering n Hadamard gates, of particular relevance in quantum computation.
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Lemma 4.19 (informal). Let E be a channel that commutes with the dephasing map
∆, let H denote the Hadamard gate and D denote trace distance. Then for any state |γ⟩
we have

max
ρ

D

(
E(ρ⊗ |γ⟩⟨γ|) , H⊗nρH⊗n

)
≥ 1− 2−n.

Thirdly, we show that k Hadamards, incoherent unitaries, classical control and an arbitrary
ancilla cannot be used to implement n > k Hadamards exactly and deterministically.

Lemma 4.22 (informal). Let U = UkVk . . . U1V1U0 be a product of unitaries, comprised
of k Hadamards Vi and incoherent Ui. Then for any state |γ⟩ we have

Tr2
(
Uρ⊗ |γ⟩⟨γ|U †

)
= H⊗nρH⊗n ∀ρ, =⇒ n ≤ k.

Whilst these results stand independently in the study of coherence, we interpret them in
quantum computation by showing that certain operationally motivated channels satisfy the
conditions.

Supporting results include showing that quantum-controlled incoherent unitaries are inco-
herent (Lemma 4.9), placing bounds on the coherence rank of a state after k Hadamards have
been applied (Lemma 4.11), and proving that if the marginal of a unitary channel acting on
an input state and fixed state is unitary, then the other marginal must be independent of the
input state (Lemma 4.21).

Open questions:

• Achieving tighter bounds and a more complete analysis.

• Uncovering general connections between resource theories and quantum computation.

• Which resource theories have free unitaries that remain free under quantum control?

• Are there quantative trade-offs involving the resource content of a given unitary U and state
σ, and the unitarity and resource content of the associated channel Λ(ρ) = Tr2(U ρ⊗σ U †)?

• What is the relationship (if any) between coherence and measurement incompatibility in
quantum computation?

Prior work and concepts:
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• The resource theory of coherence [34], and specifically the idea of using a resourceful
state and resourceless channel to implement a resourceful channel – see [137] and the
associated erratum [136].

• Gadget based approaches to quantum computation, specifically magic state injection
[39, 74, 75]

• Measurement-based quantum computation [37, 138], and in particular approaches that
achieve universality using only X and Z measurements [135].

4.1.2 Background

The seminal result of the Gottesman-Knill theorem [20, 71–73] states that any quantum
computation consisting of Clifford operations (comprised of CNOT, Hadamard and phase
gates), can be simulated efficiently on a classical computer. It is known that the T gate elevates
this set to universality, and the Clifford + T gate set is perhaps the most widely considered
universal set of gates. Motivated by error-correction and fault-tolerance considerations [39], in
place of directly applying a T gate, one can perform adaptive Clifford operations on an arbitrary
input state and a so-called magic state, to implement the T gate deterministically. This is
often referred to as a gadget, where one replaces all uses of a given gate with this subroutine,
consuming a resourceful state in the process. See Example 4.2 below for further detail here.

Another example of a gadget-based approach can be found in recent work on matchgate
circuits [139, 140]. Matchgates are a family of two-qubit gates, inspired by fermionic systems,
that can be written as the direct sum of two single qubit gates with the same determinant, acting
respectively in the even and odd parity subspaces [141]. It is known that circuits composed
of matchgates acting only on nearest-neighbour qubits are classically simulable, however any
family of quantum circuits can be simulated efficiently with circuits composed of matchgates
acting on next-nearest-neighbour qubits [141, 142]. Hence nearest-neighbour matchgates can be
augmented to universality using SWAP gates, analogously to Clifford circuits and T gates. The
work of [139, 140] highlights this connection (see Figure 1 in [140]), and shows the existence
of a SWAP state, which can be consumed under adaptive nearest-neighbour matchgates to
implement the SWAP gate. This provides a parallel gadget based approach to the Clifford
+ T case, in which resourceful states are consumed to implement resourceful gates, enabling
universality.

Measurement based-quantum computing (MBQC) [37] generally refers to any model of
quantum computation in which the primary allowed operations are measurements. The foremost
example of this is the so-called one-way MBQC model [138, 143], in which adaptive single
qubit measurements are performed on some fixed resource state. This is usually taken to be
a cluster state, a state in which qubits are laid out in a rectangular grid, initialised to |+⟩
states, and controlled-Z gates are applied between neighbouring qubits. Another model is
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teleportation-based quantum computation, which proceeds by using Bell measurements to
teleport gates [37, 144].

The above examples are all connected: they all relate to performing some perceived free
operations on an apparently resourceful fixed state. In the magic state injection model, one
may consider Clifford operations as free, and the resource state contains the magic needed
for the computation. In the standard MBQC framework, local measurements are considered
free (one can generalise this to consider arbitrary local operations and classical communication
(LOCC) operations [134]), and and the resource state contains all the entanglement needed for
the computation.

The framework of quantum resource theories [35] (see also Section 1.4.7) aims to identify
components of quantum theory that are non-classical in some sense, by defining so called free
sets of states, and allowed channels and measurements. One can then define resource quantifiers,
such as the distance a given object is away from the free set, or finding a minimal convex
combination of an object and free object. This paradigm has roots motivated by thermodynamics,
and the archetypal quantum resource theory is that of entanglement. Here the free states and
allowed channels can respectively taken to be separable states and LOCC. The resource theory
of coherence has also gathered a lot of attention in recent years [34], and is highly relevant to
this chapter. In this context, the set of free states are those which are diagonal in some fixed
basis (termed incoherent), however there are multiple approaches to defining the allowed class
of operations, which has lead to fruitful and nuanced discussion [80] – see Section 1.4.7 for some
comments.

When considering the computational power of a set of quantum operations, there are multiple
approaches one can take. One can consider classical simulability, namely if one can efficiently
perform the same calculation on a classical computer. Here there are several subtleties: how to
precisely quantify ‘efficiently’, and the exact simulation task considered; for example the ability
to sample from measuring the final state in the computational basis (weak simulation), or the
ability to compute or bound a given output probability of the final state (strong simulation) - see
e.g. [69, 145, 146]. Another angle is to consider universality, that is, the ability of the operations
to implement any unitary or prepare any quantum state, with extensions including notions
of approximate and probabilistic universality [134, 147]. These ideas are not independent: for
quantum computers to be strictly more powerful than classical computers, one would expect that
efficient classical simulation of a universal quantum device is not possible, however the inability
to classically simulate a quantum process efficiently does in general not imply universality (for
example, consider approaches to so-called ‘quantum computational supremacy’ [148]).

In this chapter, we focus on the notion of universality. We consider the resource of coher-
ence in gadget-based approaches to quantum computation through studying the role of the
Hadamard gate. Specifically, we ask whether given access to incoherent unitaries (i.e. unitaries
unable to generate superpositions when acting on computational basis states), computational
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basis measurements, and classical control (e.g. applying unitaries conditioned on previous
measurement outcomes) if there exists a quantum state (which can be completely arbitrary)
such that one can implement Hadamard gates, either exactly or approximately. To phrase this
in a slightly contrived fashion and give broader motivation, suppose some distant civilisation
are capable of preparing and transporting some complicated resourceful state. What are the
minimal operations that are necessary for the recipient in order for them to be able to perform
universal quantum computation? In this chapter, we will provide evidence of where this resource
‘cut’ lies: the ability to perform coherent operations (or incompatible measurements) are all that
is necessary, everything else can be moved into the resource state. Complementary results also
show that the ability to perform the Hadamard gate is sufficient in this context [135], hence we
draw closer to a complete answer to this question. Along the way, we show several results that
may be of broader interest in quantum information, computation, and resource theories.

We will now introduce some examples that explain the above areas in more detail, providing
concrete motivation and serving as a reference for the rest of the document.

Example 4.1. Incoherent operations (IO) are defined as channels admitting a Kraus
decomposition E(ρ) = ∑

αKαρK
†
α such that KαρK

†
α is an incoherent state for each α and

each incoherent state ρ. It is known that these channels supplemented with a maximally
coherent state |Ψd⟩ = d−

1
2
∑d−1
k=0 |k⟩ ∈ Cd are able to implement any quantum channel

[137].
It was originally claimed in the same paper that a similar result, namely the ability to

implement any unitary given access to |Ψd⟩, held for strictly incoherent operations (SIO),
which are IO with the additional property that K†αρKα is an incoherent state for each α

and each incoherent state ρ. However, it was later shown in [136], an erratum to [137] that
their proof was invalid as the operations used were not SIO. In this erratum, the authors
gave a simple argument that if a qubit channel commutes with the dephasing map (which
all SIO do), then even supplemented with an arbitrary ancilla one cannot implement any
coherent unitary.

This example highlights an interesting distinction: IO can ‘unlock’ the resource in a
supplementary state, whereas the slightly weaker class of SIO are unable to access any
of this state resource. In this chapter we show that a class of operations motivated by
quantum computation gadgets are also unable to harness the power in a supplementary
coherent state.
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Example 4.2. Consider the gate set of Clifford + T , comprised of gates from {CNOT,H, S, T},
where H is the Hadamard gate and S is the phase gate. As discussed above, the T gates
may be implemented by performing adaptive Clifford operations on supplementary T

states. A natural question is: where else could we put the ‘cut’ between gates and states?
Could it be possible to do universal quantum computation with only adaptive CNOT gates
acting on some supplementary resourceful state?

To provide a more concrete basis for this question, consider the following circuit, valid

for all diagonal gates U =
(

1 0
0 eiθ

)
and qubit input |ψ⟩ ∈ C2.

|ψ⟩ • U2 U |ψ⟩

U |+⟩

(4.1)

Magic state injection is the special case of this when U = T :

|ψ⟩ • S T |ψ⟩

|T ⟩ := T |+⟩

(4.2)

Observe that for U = Z, this becomes

|ψ⟩ • Z |ψ⟩

|−⟩

(4.3)

as Z2 = 1. Hence given access to CNOTs and |−⟩ states we can implement the Z gate
deterministically. We can apply this as a subroutine, enabling us to implement the phase
gate S using two CNOTs and the state |−⟩

(
|0⟩+i|1⟩√

2

)
. Iterating in this way, we can reach

any gate of the form Uk =

1 0
0 e

2πi

2k

 for k ∈ N (note that U2 = T ). Hence for Clifford

+ T , we can replace the S and T gates with gadgets, and perform universal quantum
computation with ability to only perform CNOTs and Hadamard on some supplementary
state. However it is not clear how to restrict this gate set further when only computational
basis measurements are permitted.
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Example 4.3. So-called Hadamard gadgets are known to exist [149–151], where they play
roles relating to compilation and simulation of quantum circuits. For example, the following
circuits appear in [149] and [150] respectively:

|ψ⟩ S • • X H |ψ⟩

|+⟩ S S† •
X

(4.4)

|+⟩ • X H |ψ⟩

|ψ⟩ •
X

(4.5)

However, they crucially rely on X basis measurements, that is, measurements in the
coherent basis {|+⟩ , |−⟩}. In this chapter, we will show that such gadgets cannot exist if
one restricts to computational basis measurements.

Example 4.4. In [135] it is shown that measurement-based quantum computing is possible
with adaptive X and Z measurements alone. This can alternatively can be viewed as the
ability to only perform the Hadamard gate and measure in the computational basis. It is
clear that the resource state here cannot be a graph state, as graph states are stabiliser
states, and as Hadamard is a Clifford gate we could simulate the whole computation using
the Gottesman-Knill theorem. Indeed the state considered in [135] is a hypergraph state
[152], formed by initialising all qubits to |+⟩ and performing multiply controlled Z gates
for each hyperedge. In particular, one can see that as CCZ is not a Clifford operation,
hypergraph states will not be stabiliser states in general.

This example shows that given the ability to only perform adaptive Hadamard gates
and computational basis measurements, there exists a resourceful ancillary state such that
universal quantum computation is possible.
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Example 4.5. In [153], it is shown that CNOT and any single qubit gate whose square is
basis changing (i.e. coherent) is universal for quantum computation. The same result is
also shown for the Toffoli gate and any single qubit basis changing gate. A simpler proof
for the case of Toffoli + Hadamard was presented in [154]. These results are conceptually
fascinating as the Toffoli gate is universal for classical computing, so by including the
‘quintessentially quantum’ Hadamard gate one elevates classical universality to quantum
universality. As the above gates are real, one uses an additional ancilla to simulate complex
numbers.

The above examples motivate the following questions:

(1) Is it possible to provide a gadget for the Hadamard gate using only incoherent unitaries,
computational basis measurements, and an ancilla?

(2) Is universal quantum computation possible with only incoherent unitaries acting on some
resourceful state? Or does any universal model require some coherence (e.g. Hadamard) in
the operations?

(3) Where can we put the ‘cut’ between states and operations for quantum computation in
general?

(4) If coherence must be present in the operations, how much coherence is necessary and
sufficient for universality?

(5) Is there a connection between the role of coherence in gadget-based approaches, and the
role of measurements in MBQC approaches?

The purpose of this chapter is to initiate this line of research, and make progress in
answering some of these questions. We provide answers in the negative to points (1) and (2),
whilst discussing (3) - (5) towards the end of the document and motivating them for future
research.

In particular, we rule out the existence of circuits of the following general form, for U and
V incoherent unitaries (e.g. products of CNOTs and T gates):

|ψ⟩

U

V H |ψ⟩

...
...

|γ⟩

(4.6)

Note that we know that the above diagram is possible with |γ⟩ = |+⟩ if we instead allow X

measurements, as shown in Example 4.3.
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At this stage, one might worry that the ancillary state |γ⟩ cannot be useful only as the set of
unitaries considered are completely resourceless. A priori, it is possible that the use of a single
Hadamard gate could allow incoherent unitaries to unlock all the power from the ancillary
state to implement a more coherent gate, for example, two Hadamards. Hence we also consider
the natural extension of whether incoherent unitaries, computational basis measurements, an
ancilla, and k Hadamards can simulate n > k Hadamards. In the case of k = 1 and n = 2, the
corresponding diagram could be of the form:

U1

H

U2

V

|ψ⟩

H1H2 |ψ⟩

...
...

|γ⟩

(4.7)

where Ui and V are incoherent unitaries and Hi denotes a Hadamard gate on the i-th qubit. We
are also able to rule out this case in this chapter. This demonstrates the importance of having
the ability to generate large amounts of coherence in any model of quantum computation,
directly contrasting with the magic state injection case in which all the ‘non-stabiliserness’ can
be placed in supplementary ancillas.

The document is organised as follows. After fixing notation, we motivate a general framework
for quantum computation involving some free unitaries acting on a resourceful state. We then
apply this to coherence in our results section, focusing on the case of incoherent resources
attempting to use a supplementary state to implement H⊗n (we refer to this as the case 0 7→ n),
as well as the case of incoherent resources and the use of k Hadamards to implement H⊗n

(the case k 7→ n). We consider the cases of exact, deterministic, approximate and probabilistic
implementation. We conclude with a discussion of the key concepts our work relates to, and
provide several novel research problems as outlook. Section 1.4.7 provides further background
to resource theories and coherence, and in particular we will use the definitions stated there for
the dephasing map, and of states and unitaries being incoherent.

4.2 Framework

In this section we will consider a general paradigm for quantum computation using some
additional ancillary state as a resource. Consider the following:
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Free operations:

• Preparation of computational basis states.

• Measurement in the computational basis.

• Classical control and adaptivity.

• Some set of unitaries U .

+ an additional (4.8)

resourceful state |γ⟩.

Here ‘classical control and adaptivity’ refers to the ability to perform a unitary from U or
measurement classically conditioned on the outcomes of previous measurements.

4.2.1 Examples

Many approaches to quantum computation fall into the above framework – see Table 4.1 for a
list of examples. In the standard circuit model, we take the set of unitaries U to be a universal
gate set, and do not consider a supplementary state |γ⟩ (i.e. it is redundant here). In the magic
state injection model, the set U is taken as Clifford gates, and the supplementary state |γ⟩
can be taken as a tensor product of T states |γ⟩ = |T ⟩⊗m, where m would be the number of
T gates in the desired circuit. For efficient quantum computation, the depth of a family of
circuits should grow at most polynomially in terms of the number of qubits n, hence in practice
we would require m = O(poly(n)). Similarly, we could also take U to be nearest-neighbour
matchgates, and |γ⟩ to be a polynomial number of SWAP states (as defined and discussed in
[139]).

For measurement-based quantum computation, we take |γ⟩ to be some entangled state, such
as a graph or hypergraph state. The operations permitted here are usually taken to be local
projective measurements, but we can include them in the above framework in the following way.
Instead of measuring in a specific basis, we could first apply a local unitary and then measure
in the computational basis. Explicitly, if we wish to measure observable P = ∑

x αx |ψx⟩⟨ψx|, we
could instead perform the unitary U = ∑

x |x⟩⟨ψx| and measure in the computational basis to
the same effect1. Hence we can incorporate measurement-based approaches here, however note
that the reverse direction does not hold: the ability to perform measurements in various bases
does not directly imply the ability to perform the corresponding unitaries2. We also remark
that if the set of unitaries U are single qubit unitaries, then clearly we are in the measurement
based scenario (as opposed to some gate injection scheme).

Let us also recall teleportation-based MBQC [37, 144]. Consider the following two circuit
identities:

1This is effectively the Heisenberg picture.
2However as we have seen, there exist Hadamard gadgets if one is allowed to perform an X measurement.

Hence with respect to incoherent unitaries, the Hadamard gate and X measurement are equivalent in some sense.
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Model Operations State References

Circuit Universal gate set − [20]

Magic State Injection Clifford |T ⟩⊗p [74]

Matchgates
Nearest neighbour

matchgates |SWAP ⟩⊗p [139, 140]

1-way MBQC LOCC Graph state [38, 134]

1-way MBQC Hadamard Hypergraph state [135]

Teleportation MBQC
Rotated Bell unitaries

Paulis
∣∣Φ+〉⊗p [37, 144]

Table 4.1: Comparison of different models of quantum computation that fall into the
framework summarised in Eq. (4.8), we are also allowing classical control and computational
basis measurement and preparation freely. |T ⟩, |SWAP ⟩ and

∣∣Φ+〉 respectively refer to the T
state, the SWAP state [139], and the maximally entangled state. Here the tensor power p
should be taken as some polynomial of the number of qubits. In place of considering
measurements, we can consider the corresponding unitaries that rotate the computational basis
into the appropriate basis. See also Table 1 in [135] for a more extensive summary of MBQC
approaches using different measurement bases.

|ψ⟩
B

•

•

V U |ψ⟩ ,

1⊗ U
∣∣Φ+〉

|ψ⟩
B(U)

•

•

V U |ψ⟩ ,

∣∣Φ+〉
(4.9)

where B := (H ⊗ 1)CNOT12 denotes the Bell unitary, B(U) := (1 ⊗ U)B is the rotated
Bell unitary,

∣∣Φ+〉 = d−
1
2
∑d−1
k=0 |kk⟩ ∈ Cd

2 is the maximally entangled state, and V is a
Pauli correction term. Hence given a pool of Bell states or rotated Bell states we can achieve
universality in this way. One can also teleport the CNOT gate in a similar fashion using a 4
qubit Bell state.

Pauli based computation (PBC) [155] proceeds by adaptively performing non-destructive
Pauli measurements on |T ⟩ states as input. To incorporate this into our framework by phrasing
it in the language of unitaries and computational basis measurements, we would have to find
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unitaries U such that UCU † = P , where C is a non-degenerate Hermitian operator diagonal in
the computational basis, and P is a tensor product of Pauli operators. Note that measuring
the operator Z ⊗ · · · ⊗ Z is not equivalent to measuring in the computational basis (it has 2
outcomes as opposed to 2n).

We also remark that to consider the notion of efficient universal quantum computation,
it is necessary to consider a family of sets of unitaries on n qubits, and the size of ancillary
state |γ(n)⟩ should scale at most polynomially with n [134, 147]. Our results allow the ancilla
to be of arbitrary size, and we show the impossibility of providing a Hadamard gadget (using
incoherent resources) within this framework. To extend our discussion to the MBQC framework,
the scaling size of the ancillary state must be taken into account. To see this, recall that an
ϵ-net is a set of states such that any state is within distance ϵ of some state in the net. One
could take the tensor product all the states in such a net as the ancilla. Then for any given
state, there would exist a marginal of |γ⟩ within distance ϵ. Thus it may appear that this would
lead to a universal model of quantum computation in which the only operations required are
partial traces. However, such a state would not scale polynomially in the number of qubits –
we elaborate on this concept in Section 4.4.2.

4.2.2 General form of operations

In order to make concrete statements, we now motivate an expression for a general operation
within the above framework. We will first need a short definition:

Definition 4.6. Given some set of unitaries U and a preferred basis {|x⟩}, we denote by
C(U) the corresponding set of generalised controlled unitaries. In particular, on n qubits
these are of the form ∑

x∈S
|x⟩⟨x| ⊗ U +

∑
y∈Sc

|y⟩⟨y| ⊗ 1, (4.10)

where U ∈ U acts on k ≤ n qubits, S ⊆ {0, 1}n−k and Sc is the complement of S in
{0, 1}n−k.

This definition simply describes the quantum equivalent of classically controlled operations:
given a computational basis vector, a unitary is performed on a subset of the qubits only for
some specific values of the remaining bits. Observe that CNOT, controlled-Z and Toffoli fall
under this definition, and general controlled operations are also discussed in [20, 156] (but for
the case where S contains a single bitstring). Note that this definition also encompasses the
case of 1⊗ U (here S = {0, 1}n−k and Sc is the empty set), and also the case of 1⊗ 1; we will
use the term ‘controlled-U ’ in this broader sense.

Now consider the operations arising from Eq. (4.8). We can without loss of generality append
all computational basis states at the beginning, and absorb them into |γ⟩⟨γ|. Hence we can
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consider the input to be ρ⊗ |γ⟩⟨γ|.
One could then apply a sequence of intermittent unitaries and computational basis meas-

urements, which could be an adaptive process conditioned on some classical information and
the outcomes of previous measurements. Note that we can delay these measurements to the
end, by instead using unitaries from the controlled set C(U). That is, if a unitary U is to be
applied on system A conditioned on the outcome of some previous measurement on system B,
we could instead apply a unitary to system B (mapping the original measurement bases to the
computational basis), and perform a controlled-U operation on system A with system B as
control. We can then defer the measurement of system B until the end of the computation. This
is often referred to as the principle of deferred measurement [20], see Fig. 4.2. For example in
one-way MBQC, this would result in a circuit of controlled single qubit unitaries being applied
to the cluster state. Finally, one could disregard some of the systems, corresponding to a partial
trace. Put together, this now leads to the following observation.

U

=
U

•

(4.11)

Figure 4.2: Principle of Deferred Measurement [20].

Observation 4.7. The most general channel possible to implement within the above
framework is given by

E(ρ) = TrX
(
U(ρ⊗ τ)U †

)
. (4.12)

Here U belongs to the set of controlled unitaries C(U), TrX denotes a partial trace on some
of the subsystems, and τ is an arbitrary fixed state.

The most general probabilistic (i.e. trace non-increasing) operation possible to imple-
ment within the above framework is given by a convex combination of operations of the
form

Ex(ρ) = TrX
(

(1⊗ |x⟩⟨x|) U(ρ⊗ τ)U †
)
, (4.13)

where the projector |x⟩⟨x| denotes a measurement in the computational basis on some of
the subsystems.

Note that the channel in Eq. (4.12) could include some final computational basis meas-
urements, but as we consider the overall channel to be independent of the outcomes of these
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measurements this corresponds to a partial trace.
In the probabilistic case, we will be interested in the case where these subchannels are

proportional to a unitary channel. Note that in general for a subchannel E to be proportional
to a channel V, i.e.

E(ρ)
Tr(E(ρ)) = V(ρ), (4.14)

we must have that Tr(Ex(ρ)) is independent of ρ, to ensure linearity.

Remark 4.8. We can take the ancilla to be pure without loss of generality, as we can
always purify the state. That is, given τ = ∑

pn |n⟩⟨n| in spectral decomposition, we can
take |γ⟩ = ∑

n

√
n |n⟩ |n⟩. This would incur a dimension increase of at most from d→ d2

and involve rewriting the unitary U as 1⊗U , but in this chapter we will leave the dimension
on the ancilla to be unrestricted, and consider the identity to always be included in the
set of free unitaries. We may interchangeably write the channels of the form Eq. (4.12) as
TrX(U(ρ⊗ τ)U †) or TrX(U(ρ⊗ |γ⟩⟨γ|)U †).

Having justified the form for channels considered in our framework, we can now use Eq. (4.12)
and Eq. (4.13) as a solid foundation as we progress to our results section.

4.3 Results

In this section we now begin presenting in detail our results. Our first main contribution is to
rule out a model of universal quantum computation that involves purely incoherent resources
acting on some (possibly coherent) resourceful state. That is, we show that such an example
would not exist in Table 4.1.

We will proceed by considering channels of the form E(ρ) = TrX(U(ρ⊗τ)U †) as in Eq. (4.12),
and we will compare these to the channel ρ 7→ H⊗nρH⊗n. As per the discussion above in
Section 4.2, the channel ρ 7→ E(ρ) is a mathematical way of writing any operation that involves
free unitaries and adaptive computational basis measurements acting on the input state ρ and
some fixed ancilla τ .

We will consider two cases: firstly when we only allow the ability to perform incoherent
unitaries (such as CNOT, S, T etc.). In this case the unitary U in E(ρ) will a be quantum
controlled version of an incoherent unitary. Secondly, we will tackle the case of using k Hadamards
to implement n > k Hadamards. We consider the cases of exact, deterministic, approximate
and probabilistic implementation, see Table 4.2 for a detailed summary of our findings.

The following subsection introduces some simple facts and supporting results.
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0 7→ n k 7→ n

Exact & Deterministic ✗ (Theorem 4.18) ✗ (Theorem 4.23)

Exact & Probabilistic ✗ (Theorem 4.18) ?

Approximate & Deterministic D ≥ 1
2

(
1− 2−n

)
(Theorem 4.20) ?

Approximate & Probabilistic D ≥ 1
2

(
1− 2−n

)
(Theorem 4.20) ?

Table 4.2: Summary of our results for using k Hadamards, incoherent unitaries, classical
control, computational basis measurements and an arbitrary ancilla to simulate n Hadamards,
where n > k. A cross (✗) indicates that we have proven a no-go result for this case. Here
D = maxρD(E(ρ), H⊗nρH⊗n) for D trace distance and E is the simulating channel using k
Hadamards, as defined in Observation 4.7. A question mark (?) indicates that we have not
considered this case in this chapter. The approximate bounds should also be compared
with the case of using no ancilla, for which we show a lower bound of D ≥

√
1− 2k−n in

Lemma 4.21.

4.3.1 Preliminaries

Here we discuss some basic results that will be useful to us in this section. The following lemma
will prove crucial.

Lemma 4.9. The family of controlled unitaries C(U) are incoherent if and only if U are
incoherent.

Proof. Recall from Definition 4.6 that the controlled unitaries are of the form

V =
∑
x∈S
|x⟩⟨x| ⊗ U +

∑
y∈Sc

|y⟩⟨y| ⊗ 1 (4.15)

for S some subset of bitstrings, and Sc its complement.
Now consider this operator acting on a computational basis state |c1⟩ |c2⟩, (with the same

tensor product structure as V above). First suppose that c1 ∈ Sc. Then V |c1c2⟩ = |c1c2⟩. Now
consider c1 ∈ S. For U = ∑

z e
iθz |π(z)⟩⟨z| incoherent, we have

V |c1c2⟩ =
∑
x∈S
|x⟩⟨x| ⊗ U |c1c2⟩ (4.16)

=
∑
x∈S
|x⟩⟨x| ⊗

(∑
z

eiθz |π(z)⟩⟨z|
)
|c1c2⟩ (4.17)

=eiθc2 |c1⟩ |π(c2)⟩ . (4.18)
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Hence V is of the form V = ∑
x e

iθx |π(x)⟩⟨x| and is thus incoherent. For the other direction, if
U is not incoherent, then it will map at least one basis vector |c2⟩ to a superposition. Then
for c1 ∈ S, V will map |c1c2⟩ to |c1⟩U |c2⟩, which will also be a superposition, and so V is not
incoherent.

For our purposes, this lemma allows us to take U to be itself incoherent in Observation 4.7,
as by definition it belongs to the set of controlled incoherent unitaries. Note also that as SWAP
is itself an incoherent unitary, in our case we can without loss of generality take the trace in
Observation 4.7 to be on the ancillary subsystem, i.e.

Ex(ρ) = Tr2

(
U(ρ⊗ τ)U †

)
. (4.19)

In addition, we will consider the case of being able to perform k Hadamard gates, and seek to
use incoherent resources and a supplementary state to implement n > k Hadamard gates. In
this case, without loss of generality the unitary U above will be of the following form

U = UkVk . . . U1V1U0, (4.20)

for Ui incoherent unitaries and Vi controlled-Hadamards (“controlled” in the general sense of
Definition 4.6).

The following definition serves as a useful discrete quantifier of coherence for pure states.

Definition 4.10. The coherence rank [34, 157] of a pure state |ψ⟩ is defined to be
the minimum number of terms required to write the state as a linear combination of
computational basis states. We denote this by χ(|ψ⟩).

For example χ(|x⟩) = 1 for any computational basis state |x⟩, and χ(|+⟩⊗n) = 2n. We also have
that χ(|ψ⟩ ⊗ |ϕ⟩) = χ(|ψ⟩)χ(|ϕ⟩). With this defined, we can state the following lemma.

Lemma 4.11. Let U = UkVk . . . U1V1U0 be a product of unitaries, alternating between
incoherent unitaries Ui and controlled-Hadamards Vi. Then we have for any state |ψ⟩, the
coherence rank satisfies

χ(|ψ⟩)
2k ≤ χ (U |ψ⟩) ≤ 2kχ(|ψ⟩). (4.21)

Proof. First note that χ(U |ψ⟩) = χ(|ψ⟩) for any incoherent unitary U (they can only per-
mute and apply local phases to computational basis states). Now let V be a Hadamard or
controlled-Hadamard gate (in the general sense of Definition 4.6), and consider the action on
a computational basis state |x⟩. We have that V |x⟩ must have coherence rank either 1 or 2.
Write |ψ⟩ = ∑

x αx |x⟩, from which it becomes clear that V |ψ⟩ = ∑
x αxV |x⟩ can have at most
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2χ(|ψ⟩) terms (some of the terms could cancel). Hence we have χ(V |ψ⟩) ≤ 2χ(|ψ⟩) for all |ψ⟩,
which also implies that χ(|ψ⟩) ≤ 2χ(V † |ψ⟩) = 2χ(V |ψ⟩), as V is self-inverse. Combining these
shows that

χ(|ψ⟩)
2 ≤ χ (V |ψ⟩) ≤ 2χ(|ψ⟩). (4.22)

Now we can use induction. The base case of U = U1V1 follows immediately from the above.
Now suppose that

χ(|ψ⟩)
2k ≤ χ (UkVk . . . U1V1U0 |ψ⟩) ≤ 2kχ(|ψ⟩). (4.23)

Define |ϕ⟩ = UkVk . . . U1V1U0 |ψ⟩, and we then get

χ(|ϕ⟩)
2 ≤ χ (Uk+1Vk+1 |ϕ⟩) = χ (Vk+1 |ϕ⟩) ≤ 2χ(|ϕ⟩). (4.24)

We will use these upper and lower bounds on the coherence rank as a key ingredient in
Theorem 4.23, one of our no-go results.

We can also make some simple observations about the trace distance, in particular:

Lemma 4.12. For the induced trace distance, it is sufficient to take the maximum over
pure states, i.e. for any channels E , V

D(E ,V) := max
ρ

D

(
E(ρ),V(ρ)

)
= max
|ϕ⟩

D

(
E(|ϕ⟩⟨ϕ|),V(|ϕ⟩⟨ϕ|)

)
. (4.25)

Proof.

max
ρ

D(E(ρ),V(ρ)) = max
pi,ψi

D

(∑
piE(ψi),

∑
piV(ψi)

)
(4.26)

≤ max
pi,ψi

∑
piD(E(ψi),V(ψi)) (4.27)

≤ max
pi,ψi

∑
pi

(
max
ϕ

D(E(ϕ),V(ϕ))
)

(4.28)

= max
ϕ

D(E(ϕ),V(ϕ)) (4.29)

≤ max
ρ

D(E(ρ),V(ρ)) (4.30)

where ρ denotes a mixed state, ψi and ϕ denote pure states, and we used linearity of the
channels and joint convexity of the trace distance [20].

For pure states we also have that [21]

D

(
|ψ⟩⟨ψ| , |ϕ⟩⟨ϕ|

)
=
√

1− |⟨ψ|ϕ⟩|2. (4.31)

Combining this with Lemma 4.12 leads to the following corollary:
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Corollary 4.13. The induced trace distance between unitary channels is given by

D(U, V ) = max
|ψ⟩

√
1− |⟨ψ|U †V |ψ⟩|2. (4.32)

Let us now briefly consider the case of no-ancilla. We would expect a non-zero distance
between H⊗n and a unitary composed of incoherent gates and k < n Hadamard gates. We have
the following lower bound in this case:

Lemma 4.14. Let U = UkVk . . . U1V1U0, where Ui are incoherent and Vi are controlled
Hadamards, and let n ≥ k. Then

D(U,H⊗n) ≥
√

1− 2k−n. (4.33)

Proof. Using Corollary 4.13 we have that

D(U,H⊗n) = max
|ψ⟩

√
1− |⟨ψ|H⊗nU |ψ⟩|2 (4.34)

≥
√

1− |⟨0n|H⊗nU |0n⟩|2 (4.35)

≥
√

1− |⟨+n|U |0n⟩|2. (4.36)

Now U |0n⟩ = UkVk . . . U1V1U0 |0n⟩ will have coherence rank at most 2k (as each incoherent
unitary preserves the coherence rank, and each controlled Hadamard can at most double the
coherence rank, by Lemma 4.11). Thus we have U |0n⟩ = ∑2k−1

x=0 αx |cx⟩ where |cx⟩ are (not
necessarily distinct) computational basis states. As |+n⟩ = 2 −n

2
∑
x∈{0,1}n |x⟩, we have that

|⟨+n|U |0n⟩|2 =
∣∣∣∣∣
∑2k−1
x=0 αx

2 n
2

∣∣∣∣∣
2

≤ 2k∑2k−1
x=0 |αx|

2

2n = 2k−n, (4.37)

where the inequality follows from Cauchy-Schwarz:
∣∣∣∑M

x=0 αx
∣∣∣2 ≤M∑M

x=0 |αx|
2 for all M , and

we used ∑2k−1
x=0 |αx|

2 = 1. Hence we have that

D(U,H⊗n) ≥
√

1− |⟨+n|U |0n⟩|2 (4.38)

≥
√

1− 2k−n. (4.39)

This shows that if k ≪ n, the unitary U composed of k Hadamards cannot be close in
induced trace distance to n Hadamards, as intuitively expected.

We now consider the first case of using purely incoherent unitaries (0 Hadamards) and an
ancilla to implement n Hadamards, considering the exact, approximate and probabilistic cases.
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4.3.2 Incoherent resources and an ancilla cannot implement n > 0
Hadamards

We first consider the question of whether incoherent resources supplemented with an arbitrary
ancillary state can implement a single Hadamard gate. We show that this is not the case. Our
strategy is to first show in Lemma 4.15 below that if a channel satisfies a certain relation with
the dephasing map, then when acting jointly on an input state and fixed arbitrary ancilla
the channel cannot implement any coherent unitary. Secondly, we show in Lemma 4.16 that
channels that only use incoherent resources supplemented with an arbitrary ancilla state (see
Section 4.2) satisfy this relation, and hence are not able to implement any coherent unitary,
such as the Hadamard.

To begin, let us prove the following lemma, which is in fact a generalisation of an observation
made in [136] (an erratum to [137] – see Example 4.1 for more context here).

Lemma 4.15. Let E : S(H1)⊗ S(H2)→ S(H1) be any channel such that

∆ ◦ E ◦∆ = ∆ ◦ E , (4.40)

where ∆ is the dephasing map defined in Eq. (1.88). Then for any state τ ∈ S(H2) the
channel Eτ (ρ) := E(ρ⊗ τ) cannot implement any coherent unitary exactly.

Proof of Lemma 4.15. Suppose that E(ρ ⊗ τ) = UρU † for some unitary U . We seek to show
that U must be incoherent if the condition (4.40) is met. This condition implies that

∆
(
E(∆(ρ⊗ τ))

)
= ∆

(
UρU †

)
, ∀ρ. (4.41)

Let Uyx := ⟨y|U |x⟩, so that

U |x⟩ =
∑
y

Uyx |y⟩ U † |x⟩ =
∑
y

U∗xy |y⟩ (4.42)

⟨x|U =
∑
y

Uxy ⟨y| ⟨x|U † =
∑
y

U∗yx ⟨y| , (4.43)

We can now use the facts that ∆(ρ⊗ τ) = ∆(ρ)⊗∆(τ) and ∆(|x⟩⟨x|) = |x⟩⟨x|, and first input
ρ = |x⟩⟨x| in Eq. (4.41) to obtain

∆
(
E(|x⟩⟨x| ⊗∆(τ))

)
= ∆

(∑
y,z

UyxU
∗
zx |y⟩⟨z|

)
(4.44)

=
∑
y

|Uyx|2 |y⟩⟨y| (4.45)

Multiplying both sides by |Uzx|2 and summing over x implies∑
x

|Uzx|2∆
(
E(|x⟩⟨x| ⊗∆(τ))

)
=
∑
x,y

|Uzx|2|Uyx|2 |y⟩⟨y| . (4.46)
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Now focusing on ρ = U † |z⟩⟨z|U = ∑
x,w UzwU

∗
zx |x⟩⟨w|, we have ∆(ρ) = ∑

x |Uzx|
2 |x⟩⟨x|.

Eq. (4.41) then implies that

∑
x

|Uzx|2∆ ◦ E
(
|x⟩⟨x| ⊗∆(τ)

)
= |z⟩⟨z| . (4.47)

Comparing (4.46) with (4.47), as the left-hand sides are equal we see that
∑
x,y

|Uzx|2|Uyx|2 |y⟩⟨y| = |z⟩⟨z| . (4.48)

This can only be true if
∑
x

|Uzx|2|Uyx|2 = 0 for y ̸= z. (4.49)

However as all terms are non-negative, we have the stronger implication that

|Uzx||Uyx| = 0 for y ̸= z, ∀x. (4.50)

This final equation implies that for all x, there can be at most one value of y such that Uyx ̸= 0.
As U is unitary, this implies that in each column there is exactly one non-zero entry, so U must
be incoherent. In particular,

U |x⟩ =
∑
y

Uyx |y⟩ = Uy′x

∣∣y′〉 , (4.51)

for some y′ (depending on x). Thus in summary, Eq. (4.41) implies that if the channel Eτ is
unitary then it must be incoherent, independent of τ .

To put this technical result into context, we now show that the channels proposed in
Observation 4.7 satisfy the condition in Lemma 4.15, and thus an arbitrary ancilla is not
sufficient to elevate incoherent resources to computational universality.

Lemma 4.16. For any incoherent unitary U , the map ρ 7→ Tr2
(
UρU †

)
commutes with

the dephasing map ∆.

See Eq. (1.86) for the definition of incoherent unitaries, and Eq. (1.88) for the definition of the
dephasing map.

Proof. First let us see that the dephasing map commutes with the action of any incoherent
unitary, recall that these are of the form U = ∑d

x=1 e
iθx |π(x)⟩⟨x| for some permutation π

(Eq. (1.86)).
Then for any state ρ we have
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U∆(ρ)U † =
(∑

y

eiθy |π(y)⟩⟨y|
)∑

x

|x⟩⟨x| ρ |x⟩⟨x|
(∑

z

e−iθz |z⟩⟨π(z)|
)

(4.52)

=
∑
x,y,z

eiθye−iθz |π(y)⟩⟨y|x⟩⟨x| ρ |x⟩⟨x|z⟩⟨π(z)| (4.53)

=
∑
x

|π(x)⟩⟨x| ρ |x⟩⟨π(x)| . (4.54)

Noting that we can also write the dephasing map as ∆(ρ) = ∑
x |π(x)⟩⟨π(x)| ρ |π(x)⟩⟨π(x)| for

any permutation π leads to

∆(UρU †) =
∑
x

|π(x)⟩⟨π(x)|
(∑

y

eiθy |π(y)⟩⟨y| ρ
∑
z

e−iθz |z⟩⟨π(z)|
)
|π(x)⟩⟨π(x)| (4.55)

=
∑
x,y,z

eiθye−iθz |π(x)⟩⟨π(x)|π(y)⟩⟨y| ρ |z⟩⟨π(z)|π(x)⟩⟨π(x)| (4.56)

=
∑
x

|π(x)⟩⟨x| ρ |x⟩⟨π(x)| . (4.57)

Hence the equality of Eq. (4.54) and Eq. (4.57) (and as ρ was arbitrary) show that ∆◦U = U ◦∆
for any incoherent U . It is also clear that the dephasing map commutes with the partial trace,
from which the result follows.

Since ∆2 = ∆, we have that E ◦∆ = ∆ ◦ E =⇒ ∆ ◦ E ◦∆ = ∆ ◦ E for any channel E , that
is, commutation of E with ∆ implies the condition imposed in Lemma 4.15.

Hence Lemma 4.16 and Lemma 4.15 together show that given incoherent unitaries and
classical control, encapsulated by the channel ρ 7→ E(ρ⊗ τ) (see the discussion in Section 4.2),
cannot exactly implement any coherent unitary, even when supplemented with an arbitrary
ancilla. This is in direct contrast to other situations, such as magic state injection.

This result is about exactly implementing a coherent unitary. It is natural to question
whether this no-go result arises from demanding too much. One possible relaxation is to consider
implementation of a coherent unitary with some non-zero probability: surprisingly we can still
show that this is impossible.

We can also show the same result for probablistic implementations. Recall from Observa-
tion 4.7 (and surrounding text) that we represent these by convex combinations of normalised
sub-channels

Ex(ρ) = αTrX
(
1⊗ |x⟩⟨x|Uρ⊗ τU †

)
. (4.58)

where the normalisation factor α does not depend on the input ρ.

Lemma 4.17. For incoherent U , the normalised sub-channel ρ 7→ Ex(ρ) commutes with
the dephasing map ∆.
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The working is very similar to that of Lemma 4.16, and we give a more concise proof as
follows.

Proof.

(∆ ◦ Ex)(ρ) =
∑
i

|i⟩⟨i|TrX
(
1⊗ |x⟩⟨x|UρU †

)
|i⟩⟨i| (4.59)

=
∑
j

TrX
(
|j⟩⟨j|1⊗ |x⟩⟨x|UρU † |j⟩⟨j|

)
(4.60)

= TrX
(
1⊗ |x⟩⟨x|

∑
j

|j⟩⟨j|UρU † |j⟩⟨j|
)

(4.61)

= TrX
(
1⊗ |x⟩⟨x|U

∑
j

|j⟩⟨j| ρ |j⟩⟨j|U †
)

(4.62)

= (Ex ◦∆)(ρ) (4.63)

As any convex combination of such channels will also commute with the dephasing map,
by Lemma 4.15 we can see that any attempt to even probabilistically implement a coherent
unitary exactly will fail. We can summarise the preceding with our first main result:

Theorem 4.18. Given the ability to perform incoherent unitaries, computational basis
measurements and classical control, it is impossible to implement any coherent unitary
(e.g. Hadamard) exactly with any non-zero probability, even when supplemented with an
arbitrary ancilla.

Proof. As discussed in Section 4.2, the ability to perform incoherent unitaries, computational
basis measurements and classical control is encapsulated by channels of the form ρ 7→ Tr2(UρU †)
for U incoherent, or in the probabilistic case by convex combinations of subchannels ρ 7→
Tr2(1 ⊗ |x⟩⟨x| UρU †). By Lemma 4.16 and Lemma 4.17, these maps commute with the
dephasing map ∆. Hence we can apply Lemma 4.15 to see that given access to the above
operations, one can never implement any coherent unitary exactly.

Approximate implementation

Having considered the exact and probabilistic cases, we now turn our attention to the approx-
imate case, focusing on tensor products of Hadamard gates (as opposed to arbitrary coherent
unitaries). Specifically, we seek lower bounds on the induced trace distance between the channels
introduced in Observation 4.7 and n Hadamard gates. Our second main technical result achieves
this goal as follows.

91



CHAPTER 4. THE HADAMARD GATE CANNOT BE REPLACED BY A
RESOURCE STATE IN UNIVERSAL QUANTUM COMPUTATION

Lemma 4.19. Let E : S(H1)⊗ S(H2)→ S(H1) be any channel that commutes with the
dephasing map, i.e.

E ◦∆ = ∆ ◦ E , (4.64)

where ∆ is the dephasing map defined in Eq. (1.88). Define the channel Eτ (ρ) := E(ρ⊗ τ)
for an arbitrary state τ ∈ S(H2). Let D denote the induced trace distance on quantum
channels. Then for all states τ , we have

D
(
Eτ , H⊗n

)
≥ 1− 1

2n . (4.65)

Proof of Lemma 4.19.. Let Cn = {|x⟩ : x ∈ {0, 1}n} denote the set of computational basis
states, and Bn = {|x⟩ : x ∈ {+,−}n} denote the set of conjugate basis states. Note that H⊗n

maps bijectively between Cn and Bn. We then have

D
(
Eτ , H⊗n

)
:= max

ρ
D

(
E(ρ⊗ τ) , H⊗nρH⊗n

)
(4.66)

≥ max
ρ

D

(
∆ ◦ E(ρ⊗ τ) , ∆(H⊗nρH⊗n)

)
(4.67)

= max
ρ

D

(
E(∆(ρ)⊗∆(τ)) , ∆(H⊗nρH⊗n)

)
(4.68)

≥ max
|ϕ⟩∈Bn

D

(
E(∆(|ϕ⟩⟨ϕ|)⊗∆(τ)) , ∆(H⊗n |ϕ⟩⟨ϕ|H⊗n)

)
(4.69)

= max
|ψ⟩∈Cn

D

(
E( 12n ⊗∆(τ)) , |ψ⟩⟨ψ|)

)
, (4.70)

where we used the contractivity of the trace distance under quantum channels, and the condition
on E commuting with the dephasing map from the theorem statement.

Now define σ := E( 1
2n ⊗∆(τ)), and note that ∆(|ψ⟩⟨ψ|) = |ψ⟩⟨ψ| for all |ψ⟩ ∈ Cn. Again

using contractivity of the trace distance we can then write

D
(
Eτ , H⊗n

)
≥ max
|ψ⟩∈Cn

D

(
σ , |ψ⟩⟨ψ|)

)
(4.71)

≥ max
|ψ⟩∈Cn

D

(
∆(σ) , ∆(|ψ⟩⟨ψ|))

)
(4.72)

= max
|ψ⟩∈Cn

D

(
∆(σ) , |ψ⟩⟨ψ|)

)
(4.73)

≥ max
|ψ⟩∈Cn

(
1− ⟨ψ|∆(σ) |ψ⟩

)
(4.74)

≥ 1− 1
2n (4.75)
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The last line can be seen by observing that for any incoherent state, the maximum diagonal
entry must be at least 1

2n .

This bound is displayed in Table 4.2, and for the case of a single Hadamard the bound
becomes D(Eτ , H) ≥ 1

2 . Operationally, this means that using an optimal (unentangled) input to
the channels, we can distinguish them with high probability given multiple uses. Note also that
as the induced trace distance is a lower bound on the diamond distance [22], we also have the
same lower bound on the diamond distance between the above channels. We can also see that
this bound is tight, as for example taking the channel E to be the map that always outputs the
maximally mixed state (which commutes with ∆), we have that D(Eτ , H⊗n) = 1− 1

2n which
matches the bound.

Furthermore, we can observe that the above analysis also applies to the probabilistic
case: using the fact that the corresponding normalised subchannel (4.13) commutes with ∆
(Lemma 4.17) we see that Lemma 4.19 also applies. The conclusion is that even approximate,
probabilistic implementation of Hadamards is not possible, which is our second main result.
Recall (see Eq. (1.44) and subsequent paragraph) that we say we can implement a channel E
ϵ-approximately if we can implement a channel V with induced trace distance D(E ,V) ≤ ϵ.

Theorem 4.20. Given the ability to perform incoherent unitaries, computational basis
measurements and classical control, it is impossible is impossible to implement n Hadamards
ϵ-approximately with non-zero probability, for 0 ≤ ϵ < 1−2−n. In particular, it is impossible
to implement a single Hadamard ϵ-approximately with non-zero probability, for 0 ≤ ϵ < 1

2 .

Proof. The proof follows a similar structure to that of Theorem 4.18. We can describe channels
arising from the stated operations by channels of the form ρ 7→ Tr2(UρU †) for U incoherent, or
in the probabilistic case by convex combinations of subchannels ρ 7→ Tr2(1⊗ |x⟩⟨x| UρU †) (see
Section 4.2). These maps commute with the dephasing map ∆ by Lemma 4.16 and Lemma 4.17.
Then Lemma 4.19 implies that given access to the above operations, one can never implement
a channel that has induced trace distance with H⊗n of strictly less than 1− 2−n.

4.3.3 Incoherent resources, k Hadamards and an ancilla cannot implement
n > k Hadamards

The above showed that incoherent resources supplemented with an arbitrary state is not
sufficient to implement even a single Hadamard gate, even approximately and probabilistically.
A further generalisation is to consider the case of having the ability to perform up to k Hadamard
gates, incoherent unitaries, classical control and access to an ancillary state. Could it be possible
here to implement n Hadamard gates, with n strictly greater than k? It would be very striking
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if this were the case, as then by repeating this process (and having many copies of the ancilla)
one could implement an arbitrarily high number of Hadamard gates when originally only given
the ability to perform a fixed number of them. We will show that this is indeed not the case,
which demonstrates the robustness of our previous results in this direction. Our result holds
when also considering general controlled Hadamard gates, which is stronger than considering
single qubit Hadamard gates as these are a special case of our generalised controlled operations
in Definition 4.6. Note also that the previous section is a special case of the scenario here (with
k = 0), however the approach and proof technique here differs substantially.

Let us first see a simple example of the case 1 7→ 2 to illustrate the general argument to
follow. For example, one could ask about the existence of circuits of the form as in Fig. 4.3,
for all two-qubit inputs |ψ⟩, fixed ancilla |γ⟩, incoherent unitaries U , V and W , and where Hi

denotes a Hadamard on the i-th qubit.

U

H

V

W

|ψ⟩

H1H2 |ψ⟩

...
...

|γ⟩

Figure 4.3: A possible circuit for using a single Hadamard gate and incoherent unitaries U , V
and W to implement two Hadamard gates. We rule out the existence of such a circuit in this
chapter.

Let us now be more precise, and argue by contradiction. Suppose that the above task was
possible. This would mean that the following equation would hold:

H1H2 |ψ⟩ |γψ⟩ = V H1U |ψ⟩ |γ⟩ , (4.76)

for some state |γ⟩, a set of states |γψ⟩ that could depend on |ψ⟩, incoherent unitaries U and V ,
and where Hi denotes a Hadamard on the i-th qubit. To see how the above diagram can be
written in this form, recall from Section 4.2 that we can replace the last gate W by its quantum
controlled version (which will be incoherent by Lemma 4.9) and absorb it into V .

Now expanding |ψ⟩ in a basis allows us to see that |γψ⟩ must actually be independent of
|ψ⟩. One may already expect this, as the first register contains all the information of the pure
state |ψ⟩, for the ancilla system to contain some information of |ψ⟩ would seem to imply a form
of cloning. Indeed for |ψ⟩ = ∑

x αx |x⟩ we have

H1H2 |ψ⟩ |γψ⟩ =
∑
x

αxV H1U |x⟩ |γ⟩ =
∑
x

αxH1H2 |x⟩ |γx⟩ . (4.77)
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Tracing out the first register then gives

|γψ⟩⟨γψ| =
∑
x

|αx|2 |γx⟩⟨γx| , (4.78)

from which the independence on |ψ⟩ follows: a sum of rank 1 operators with non-negative
coefficients can only be equal to a rank 1 operator if all the operators are proportional. We can
now write

V H1U |ψ⟩ |γ⟩ = H1H2 |ψ⟩
∣∣γ′〉 (4.79)

for some state |γ′⟩. Let the coherence rank of |γ⟩ and |γ′⟩ be r and r′ respectively. Then taking
|ψ⟩ to be |00⟩ and |++⟩, Eq. (4.79) implies the following two equations

V H1U |00⟩ |γ⟩ = |++⟩
∣∣γ′〉 (4.80)

V H1U |++⟩ |γ⟩ = |00⟩
∣∣γ′〉 . (4.81)

By recalling that incoherent unitaries cannot change the coherence rank, and a single Hadamard
can at most double and at least halve the coherence rank, these equations respectively imply
that

4r′ ∈ [r2 , 2r] (4.82)

r′ ∈ [2r, 8r] =⇒ 4r′ ∈ [8r, 32r], (4.83)

which is a contradiction. We thus see that it must be impossible for a single Hadamard gate,
incoherent unitaries and classical control to implement two Hadamard gates, even given access
to the arbitrary state |γ⟩.

We can generalise and formalise this argument to show the impossibility of k Hadamards
and incoherent resources implementing n > k Hadamards. The argument will proceed in the
same two steps as above: first showing that the ancillary register must be left in a state that is
independent of the input ρ, and secondly use the resource content of these states (coherence
rank) to derive a contradiction.

Lemma 4.21. Suppose that there exists some bipartite unitary U , local unitary V , and
state |γ⟩ such that for all ρ we have

Tr2
(
Uρ⊗ |γ⟩⟨γ|U †

)
= V ρV †. (4.84)

Then
Tr1

(
Uρ⊗ |γ⟩⟨γ|U †

)
=
∣∣γ′〉〈γ′∣∣ (4.85)

for some fixed pure state |γ′⟩ that is independent of ρ.
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Proof. In particular, for ρ = |ψ⟩⟨ψ| a pure state, Eq. (4.84) becomes

Tr2
(
U |ψ⟩⟨ψ| ⊗ |γ⟩⟨γ|U †

)
= V |ψ⟩⟨ψ|V †. (4.86)

Since tracing out the second system of U |ψ⟩ |γ⟩ results in a pure state for all |ψ⟩, the total
state U |ψ⟩ |γ⟩ must be a pure product state. So in summary we must have

U

(
|ψ⟩ |γ⟩

)
= V ⊗ 1

(
|ψ⟩ |γψ⟩

)
(4.87)

for some pure state |γψ⟩ that a priori could depend on |ψ⟩.
Now as before, write |ψ⟩ = ∑

x αx |x⟩. Then we have

V ⊗ 1 |ψ⟩ |γψ⟩ =
∑
x

αx U |x⟩ |γ⟩ =
∑
x

αx V ⊗ 1 |x⟩ |γx⟩ (4.88)

Multiplying by V † ⊗ 1 now implies that

∑
x

αx |x⟩ |γψ⟩ =
∑
x

αx |x⟩ |γx⟩ . (4.89)

Tracing out the first system gives

|γψ⟩⟨γψ| =
∑
x

|αx|2 |γx⟩⟨γx| , (4.90)

which in turn implies

|γψ⟩⟨γψ| = |γx⟩⟨γx| = |γx′⟩⟨γx′ | ∀x, x′, ψ (4.91)

and so |γψ⟩ must be independent of |ψ⟩.
Hence we have shown that for all pure states |ψ⟩

Tr1
(
U |ψ⟩⟨ψ| ⊗ |γ⟩⟨γ|U †

)
=
∣∣γ′〉〈γ′∣∣ (4.92)

for some state |γ′⟩ independent of |ψ⟩. To complete the proof, write an arbitrary mixed state
as ρ = ∑

k pk |ψk⟩⟨ψk| with ∑k pk = 1, and observe that

Tr1
(
Uρ⊗ |γ⟩⟨γ|U †

)
=
∑
k

pkTr1
(
U |ψk⟩⟨ψk| ⊗ |γ⟩⟨γ|U †

)
(4.93)

=
∑
k

pk
∣∣γ′〉〈γ′∣∣ (4.94)

=
∣∣γ′〉〈γ′∣∣ (4.95)
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We can use this lemma to explicitly rule out the possibility of k Hadamards and incoherent
resources exactly implementing n Hadamards. To do this, we will consider unitaries of the
following form:

U = UkVk . . . U1V1U0, (4.96)

where Ui are incoherent unitaries and Vi are Hadamards or controlled Hadamards (in the general
sense of Definition 4.6). As discussed in Section 4.2, this describes any operation involving
incoherent unitaries, classical control and k Hadamard gates – see Eq. (4.20) and surrounding
text. We can now state our next result.

Lemma 4.22. Let U = UkVk . . . U1V1U0 be a product of unitaries, alternating between
incoherent unitaries Ui and controlled-Hadamards Vi. If we have that

Tr2
(
Uρ⊗ |γ⟩⟨γ|U †

)
= H⊗nρH⊗n ∀ρ, (4.97)

then we must have that n ≤ k.

Proof. Consider the case where ρ = |ψ⟩⟨ψ| is a pure state. Using Lemma 4.21, we can then
write Eq. (4.97) as

U |ψ⟩ |γ⟩ = H⊗n ⊗ 1 |ψ⟩ ⊗
∣∣γ′〉 (4.98)

for some fixed state |γ′⟩.
Let |γ⟩ and |γ′⟩ have coherence ranks r and r′ respectively (recall Definition 4.10 for the

definition of the coherence rank χ), and consider the cases of |ψ⟩ being equal to |0n⟩ and |+n⟩:

U |0n⟩ |γ⟩ = |+n⟩
∣∣γ′〉 (4.99)

U |+n⟩ |γ⟩ = |0n⟩
∣∣γ′〉 . (4.100)

By comparing the coherence ranks of both sides of the above equations, we find that χ(U |0n⟩ |γ⟩) =
2nr′ and χ(U |+n⟩ |γ⟩) = r′. Hence

χ(U |0n⟩ |γ⟩)
2n = χ(U |+n⟩ |γ⟩). (4.101)

We now directly apply Lemma 4.11, which provides lower and upper bounds on the coherence
rank of a state after applying a sequence of incoherent unitaries and controlled Hadamards. We
obtain

χ(U |0n⟩ |γ⟩) ≤ 2kχ(|0n⟩ |γ⟩) = 2kr (4.102)

χ(U |+n⟩ |γ⟩) ≥ 2−kχ(|+n⟩ |γ⟩) = 2n−kr. (4.103)

Combining these with Eq. (4.101) leads to

2n−kr ≤ 2k−nr, (4.104)
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which as the coherence rank r > 0 implies that

n ≤ k (4.105)

as claimed.

We summarise the implication of the preceding technical result to place it in context with
the rest of the chapter.

Theorem 4.23. Given the ability to perform incoherent unitaries and k Hadamards,
computational basis measurements and classical control, then even with access to an
abritray ancillary state, it is impossible to implement n Hadamards exactly, for n > k.

Proof. As discussed above and in Section 4.2, any operation involving incoherent incoherent
unitaries, k Hadamards, computational basis measurements, classical control and access to
some ancillary state |γ⟩ can be written as ρ 7→ Tr2(Uρ⊗ |γ⟩⟨γ|U †), where U = UkVk . . . U1V1U0

alternates between incoherent unitaries Ui and controlled Hadamards Vi (controlled in the
general sense of Definition 4.6). Lemma 4.22 then directly yields the result.

4.4 Discussion and open questions

We have introduced a unifying framework for approaches to quantum computation involving
operations on some fixed, resourceful state. After studying the role of coherence in this context,
we showed that some coherence must be present in the operations. By motivating a general form
of the possible channels, we have been able to provide a series of no-go results for incoherent
resources being able to implement a unitary channel with increased cohering power, even given
an arbitrary ancillary state. This shows that unlike e.g. magic, this resource cannot be placed
inside a resourceful state and retrieved; it really has to be in the operations, showing a marked
difference to other resources for quantum computation. There are many interesting future
avenues to explore.

4.4.1 Extending our results

Firstly, it would be of value to extend and sharpen our specific results. For example, we did
not include the case of using k Hadamards, incoherent resources and an arbitrary ancilla to
implement n > k Hadamards approximately or probabilistically, which involves considering
subchannels as in Eq. (4.13). We leave these questions to ongoing and future work, in order to
complete the picture as presented in Table 4.2.

In the case of using incoherent resources to simulate n Hadamards, we were content to show
that approximate implementation is not possible, and we have left the optimality of our bound
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open. Specifically, we were able to exploit the fact that the corresponding channels commuted
with the dephasing map. For channels that use a non-zero amount of coherence (e.g. using
k < n Hadamards), one possibility would be to find a similar characterisation, for example,
commutation with some channel that only allows a small amount of coherence through.

It would also be interesting to understand if there is any advantage at all to using an
ancillary state. We proved a much weaker lower bound (Lemma 4.19) compared to not using
an ancilla at all (Lemma 4.21), perhaps there is still some advantage to be had here. In this
chapter, we were primarily concerned with providing lower bounds in order to show no-go
results, but do there exist interesting upper bounds? That is, perhaps one could show that using
an ancillary state allows for a strictly better approximation to a coherent unitary, compared to
the case of no ancilla.

Problem 1. Improve or show optimality of the bounds presented in this chapter, and find
lower bounds on implementing n Hadamards using k Hadamards, incoherent unitaries, classical
control, computational basis measurements, and an arbitrary ancilla.

4.4.2 Links with MBQC

Our results concern the circuit model, so it would also be interesting to extend our results to
the measurement based scenario. Let us first review some previous works, before commenting
on how one could formulate and engage with analogous questions here.

The universality of states for one-way MBQC has been studied in [134, 147], taking LOCC
as the free operations. In particular, in [134] they distinguish between four types of universality
depending upon whether the input and output considered are classical (C) or quantum (Q).
In this language, a device is considered to be QQ-universal if it can implement any unitary
operation U , and CQ-universal if it can prepare any pure quantum state |ψ⟩. This scenarios are
natural when respectively considering the circuit model and the measurement based model (for
which the local operations exclude the notion of a quantum input). The authors also discuss
the subtleties of efficiency, and of approximate and probabilistic universality in [147].

As QQ-universality (quantum inputs and outputs) is concerned with simulation of a unitary
channel, it possess a parallel with the gadget-based approach considered in this chapter. On the
other hand, as CQ-universality is the appropriate notion for MBQC, there are some intricacies
involved, for example one must take into account the dimension of the ancillary state for any
meaningful definition. To see this, recall that a ϵ-net is a set of pure quantum states such that
any pure quantum state is within distance ϵ of some state in the net. Hence, one could encode
such an ϵ-net into an ancilla (i.e. take the tensor product of all states in the net). Then by
simply tracing out all but one of the subsystems, one could prepare any pure state to within ϵ

distance. However the size of any ϵ-net increases rapidly with the dimension of the systems
[158, 159], hence this approach is highly impractical and more refined ideas would be needed.
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One could extend the definitions in [134, 147] to more general free operations by posing the
following question: given some set of allowed operations (e.g. LOCC) does there exists a family
of resourceful ancillary states that yield CQ-universality? We provide an example of such a
definition here, inspired by the aformentioned works.

Definition 4.24. A family of sets of operations {Vn} is ϵ-approximate, efficiently CQ-
universal, with respect to a distance measure D if:

there exists: a family of states {|γ(n)⟩}, where each |γ(n)⟩ is on at most poly(n) qubits

such that: for every family of states {|ψn⟩ ∈ (C2)⊗n } obtainable by a uniform

family of quantum circuits of depth at most poly(n)

there exist: maps En ∈ Vn

such that: D

(
En(|γ(n)⟩⟨γ(n)|), |ψn⟩⟨ψn|

)
≤ ϵ ∀n.

One could also consider the probabilistic case, see [147]. For example, the operations LOCC
are universal under this definition, as the cluster states serve as the resource state. Similarly,
due to the results in [135], the ability to only perform local Hadamard gates (with adaptivity
and computational basis measurements) are universal using hypergraph states.

Hence a natural extension of our work to the MBQC framework could be to consider if
for incoherent LOCC operations there exists a family of resourceful states such that the pair
is approximately, efficiently universal. More specifically, one could ask if there exists a family
of resource states such that one can achieve efficient, universal quantum computation using
only computational basis measurements (at least two measurement bases may at first seem to
be necessary [135], however note that some adaptivity is still possible in the order of systems
measured). Furthermore, what would the analogous version of the k 7→ n question be? Given
the ability to perform only k Hadamards (or k X measurements), can one perform universal
quantum computation? Again this may translate to the existence of some fixed resourceful
state, from which any state could be prepared.

Problem 2. Is efficient, universal measurement based quantum computation possible with only
incoherent resources (for example, using only Z measurements)?

The above points also raise interesting questions about the relationship between coherence
and quantum incompatibility [32, 33]. The latter refers to the fact that not all measurements
can be simultaneously performed in quantum theory. For projective measurements, the natural
condition is whether the corresponding observables commute (as then a common eigenbasis
exists to measure in). For more general POVM measurements, the prevailing notion is to ask
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for the existence of a so-called parent measurement, from which the outcomes of all other
measurements can be post-processed3 [32].

Within our framework, we related the ability to perform in different measurement bases to
the unitary that maps between the bases (i.e. in the Heisenberg picture). This could indicate
that these resources are equivalent in some way, and perhaps that for any model of universal
quantum computation either coherence must be present in the operations, or some form of
incompatibility must be present in the measurements.

Problem 3. Are coherence and measurement incompatibility computationally related?

We also remark that due to existing Hadamard gadgets [73, 149, 150], the ability to measure
in the X basis is equivalent to the ability to implement the Hadamard, given the ability to
perform incoherent unitaries freely and access to ancillas.

4.4.3 General resource theories

Finally, our analysis raises some interesting questions for general resource theories [35], see
Section 1.4.7 for some background. One way of seeing how our result went through is that for
the resource theory of coherence, the quantum controlled free unitaries are also free. This is
not the case for e.g. magic, as an S gate is Clifford, but a controlled S gate is not Clifford, or
for LOCC (e.g. CNOT). This leads to a natural question:

Problem 4. Are there other resource theories for which taking quantum control of the free
operations remains free?

Our results also hint at a general trade-off between resource generating power and unitarity.
Consider a free set of states F and a resource quantifier Q, and define the resource generating
power of a channel V as maxρ∈F Q(V(ρ)). Suppose a channel is of the form

E(ρ) = Tr2
(
Uρ⊗ τU †

)
(4.106)

and U has resource generating power α. If the channel E has resource generating power strictly
greater than α, intuitively this might suggest that U is swapping in some of the resource
contained in τ , and hence E must be compromising on being unitary. Clearly the total resource
content of E should be somehow upper bounded by the sum of that of U and the state τ . But
in order for E to be unitary, perhaps it cannot use any of the resource contained in τ . See [160]
for related work in this direction. The authors provide quantitative relations between resource
content, implementation accuracy, and the dimension of the ancillary system, which they show
diverges as the implementation accuracy goes to zero.

Problem 5. Is there a trade-off between unitarity and resource generating power?
3Equivalently, one can consider the commutativity of the Naimark dilation of the measurements.
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In light of this, we note that the style of channels considered in this chapter seems to hint
at a potential new class of resourceful operations. We essentially consider resourceless channels
with access to an arbitrarily resourceful state, which does not neatly fit into existing resource
theoretic frameworks.

4.4.4 Concluding remarks

Whist progress has been made in understanding the components required to achieve a super-
classical speedup, such as entanglement and magic, there are many exciting research avenues
open to explore. The subfield of quantum resource theories has had relatively little intersection
with topics in quantum computation, and there may be much to be gain from approaches that
attempt to unify the different models of computation, such as gadget or measurement based. It
is our hope that through studying characteristic features of quantum theory (such as coherence)
on the level of states, channels and measurements, one may hope to gain a more complete
understanding of the power of quantum computation.
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Testing multipartite productness is easier

than testing bipartite productness

Chapter Summary

We prove a lower bound on the number of copies needed to test the property of
a multipartite quantum state being product across some bipartition (i.e. not genuinely
multipartite entangled), given the promise that the input state either has this property
or is ϵ-far in trace distance from any state with this property. We show that Ω(n/ logn)
copies are required (for fixed ϵ ≤ 1

2 ), complementing a previous result that O(n/ϵ2) copies
are sufficient. Our proof technique proceeds by considering uniformly random ensembles
over such states, and showing that the trace distance between these ensembles becomes
arbitrarily small for sufficiently large n unless k = Ω(n/ logn). We discuss implications for
testing graph states and computing the generalised geometric measure of entanglement.

This chapter is based on unpublished work with Ashley Montanaro.

Relevant background: multipartite entanglement and Schmidt decomposition (Sec-
tion 1.4.2), Haar integration and the symmetric subspace (Section 1.4.8).
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5.1 Introduction

Quantum entanglement [29, 76, 161] is celebrated as a ubiquitous resource across the whole
landscape of quantum information and technology. In measurement based approaches to
quantum computation [37, 38, 138], one seeks to generate entanglement between multiple sites,
for example via the creation of graph states [162, 163], and an important practical task is to be
able to certify the presence (or lack of) such entanglement [164, 165]. Multipartite entanglement
[166, 167] is also a fundamental component of quantum networks [61, 168] and plays a significant
role in quantum error correction [169, 170].

In classical computer science, the domain of property testing [171, 172] seeks to ascertain if
a given object has some property P , or is far away from having that property. An ϵ-tester takes
as input either x ∈ P or x ϵ-far from P , and in the former case it accepts with probability at
least 2

3 , whereas in the latter case it accepts with probability at most 1
3 . A tester is deemed

efficient if the number of queries made (e.g. number of bits of the object read) is much less
than the size n of the object. Quantum property testing applies these notions to the quantum
world, where one can take either the tester or the object to be tested (or both) to be quantum
mechanical in some aspect – see [36] for a comprehensive review. When testing properties of
quantum states, one typically seeks algorithms that minimise the number of copies required
to test the desired property. In particular, it is highly desirable to prove lower bounds on
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the number of copies required, to understand the optimality of various approaches and the
fundamental limits on extracting information from quantum states.

In this chapter we will study the property of a multipartite quantum state being product
across some (unknown) bipartition, or equivalently the property of not being genuinely multi-
partite entangled, through the lens of property testing. Let us formalise some definitions.

Definition 5.1. Consider a state |ψ⟩ ∈ (Cd)⊗n consisting of n parties, each of local
dimension d. We say that it is

• Genuinely multipartite entangled (GME) if it is entangled across any bipartition of
the n parties.

• Bipartite product (BP) if it is not GME, that is, there exists some non-trivial partition
S ⊂ [n] such that the state is product across this bipartition.

• Multipartite product (MP) if the state is product across every bipartition, i.e. the
state can be written as the tensor product of n local states.

In [173], it is shown that given an n-partite state |ψ⟩ that is either multipartite product, or
is at least ϵ far from any multipartite product state, there exists a tester using two copies of the
input state |ψ⟩, and accepts with certainty if |ψ⟩ is MP and accepts with probability at most
1 − Θ(ϵ2) otherwise. Repeating this procedure k times (using 2k copies) reduces this latter
probability to (1−Θ(ϵ2))k ≤ e−Θ(kϵ2), and hence the property of multipartite productness can
be tested using O(1/ϵ2) copies, for any n. The proof strategy uses the product test [174], which
in turn consists of applying the swap test [175] (a simple test for equality of two states) across
corresponding pairs of subsystems of two copies of the input state (also see [36] for a proof
sketch).

Furthermore, a general result is derived in [176] for testing multiple properties of a quantum
state simultaneously. More specifically, given a set of measurement operators Mi (POVM
elements satisfying 0 ≤Mi ≤ 1 , corresponding to different measurements {Mi , 1−Mi}) and
an input state ρ with the promise that either Tr(Miρ) is small for all i, or there exists at least
one i with Tr(Miρ) large, the authors construct a procedure that distinguishes between these
cases using one copy of the input state ρ. In the same paper this result is applied to testing
bipartite productness: building upon the result from [173] they derive a tester using O(n/ϵ2)
copies of the state.

In this chapter, we show that this is close to optimal – at least Ω(n/ logn) copies are needed
to test bipartite productness, for any fixed constant 0 < ϵ ≤ 1

2 . Our main result can be stated
formally as follows.
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Theorem 5.2. An ϵ-tester for testing the property of a multipartite state |ψ⟩ ∈ (Cd)⊗n

being bipartite product requires at least Ω
(

n
logn

)
copies of the input state |ψ⟩, for any

0 < ϵ ≤ 1
2 .

So testing bipartite productness across an unknown bipartition is harder than testing both
multipartite productness or productness across a known partition (both can be done with
O(1/ϵ2) copies), hence it appears that the uncertainty regarding which partition the state is
product across is responsible for the increase in hardness. We now comment on two initial
applications of our result.

Recall that graph states [162, 163] are defined by associating a qubit initialised in the
|+⟩ = 1√

2(|0⟩+|1⟩) state for every node, and applying a controlled-Z gate for every corresponding
edge. Given a graph state, one can consider testing classical properties of the underlying graph
[177] using few copies of the state [178, 179]. In particular, our work here relates to the property
of the underlying graph being connected: if there exists a path from any vertex to any other
vertex. The underlying graph is not connected if and only if the associated state is bipartite
product. Therefore our results imply that any attempt to test non-connectivity of the underlying
graph by testing if the state is bipartite product must use Ω(n/ logn) copies. However, it is not
ruled out that one could test for non-connectivity using fewer copies, taking advantage of the
information that the given state is promised to be a graph state.

Secondly, consider the following quantifier of multipartite entanglement

EG(|ψ⟩) := 1− max
|ϕ⟩ is BP

|⟨ψ|ϕ⟩|2 (5.1)

= min
|ϕ⟩ is BP

D (|ψ⟩⟨ψ| , |ϕ⟩⟨ϕ|)2 (5.2)

for D the trace distance. This is known as the generalised geometric measure of entanglement –
see [180–182] and references therein. Thus we can reinterpret our main result as showing that
to determine if either EG(|ψ⟩) = 0 or EG(|ψ⟩) ≥ ϵ2 (given the promise that one of them holds),
you need Ω(n/ logn) copies of |ψ⟩, for any 0 < ϵ ≤ 1

2 . So in general one can expect computing
EG to require at least this many copies.

Our proof of Theorem 5.2 proceeds in several steps:

(i) We first show in Lemma 5.3 that if a tester exists, then this places a lower bound on the
trace distance of certain quantum states. These quantum states are respectively close to
distributions over BP and ϵ-far from BP states.

(ii) We then give an upper bound on the trace distance between these states as a function of
n (the number of parties), k (the number of copies) and d (the local dimension) – this is
Lemma 5.4.
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(iii) Finally, we see that unless k = Ω(n/ logn), then this upper bound goes to zero, which
contradicts the existence of a tester.

The bulk of the technical work is in proving point (ii), which requires calculations involving
the Haar measure, symmetric subspace and permutation matrices – see e.g. [81, 183, 184] for
relevant literature.

5.1.1 Summary of results

Main conceptual contributions:

• We show that testing bipartite productness of a multipartite state requires Ω(n/ logn)
copies of the state.

• This also gives a lower bound on the number of copies required to compute the generalised
geometric measure of entanglement, and on testing for non-connectivity in graph states
using this method.

Main technical calculations:

Lemma 5.4. Consider the following states

ρ = Πk
dn(dn+k−1
k

) , σ = E
S⊆[n]

[ Πk
d|S| ⊗S Πk

dn−|S|(d|S|+k−1
k

)(dn−|S|+k−1
k

)], (5.3)

where Πk
d denotes the projector onto the symmetric subspace of k systems of local dimension

d. Then their squared trace-distance is upper bounded by the following expression:

D(ρ, σ)2 ≤ k!
4

(
1 + (k!)3

(1 + d

2d

)n
− e−k2/dn

)
. (5.4)

Lemma 5.5. Let |ψ⟩ ∈ (Cd)⊗n be drawn uniformly at random from the Haar measure,
and let Γmax denote the maximum Schmidt coefficient over all non-trivial bipartitions.

Let
√

3
2 ≤ γ < 1 be a constant. Then there exist positive constants c1, c2 and N (in

terms of γ, d) such that for all n > N

P (Γmax > γ) ≤ c12ne−c2dn
. (5.5)
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Open questions:

• Can our lower bound be improved to Ω(n) to tightly match the known upper bound?

• How many copies of the input state are required to test the complementary property of
being maximally multipartite entangled (according to some particular measure)?

Prior work and concepts:

• Montanaro and de Wolf give an excellent overview to quantum property testing in general
[36], and there exist several excellent reviews of entanglement [28, 29], which cover
the multipartite setting. In addition, [162] gives an overview of graph states and their
applications.

• In [173], the authors discuss testing the property of being a product state.

• The main upper bound of O(n) for testing the property of being not genuinely multipartite
product comes from [176] – this paper motivates our work as we seek to determine how
optimal this approach is.

Figure 5.1: Illustration of the property considered in this chapter. The input is given by a
quantum state |ψ⟩ ∈ (Cd)⊗n, which is either product across some bipartiton S : Sc, or ϵ-far
from being product. We are interested in algorithms for distinguishing these cases that use a
small number of copies k of the input state |ψ⟩. Some of the technical aspects of this chapter
(see Lemma 5.4) involve unitaries Uα that permute the k systems according to a permutation
α ∈ Sk. Note that in the context of this diagram, these permutations Uα permute the k
‘columns’, and not the n ‘rows’, and hence given some bipartion S ⊂ [n] we can write
U ′α = Uα ⊗S Uα for U ′α acting on the whole space – see also Eq. (5.6).
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5.1.2 Mathematical preliminaries

We use D(ρ, σ) := 1
2∥ρ− σ∥1 to denote trace distance,

(n
k

)
:= n!

(n−k)!k! the binomial coefficients,
and [n] := {0, . . . , n − 1} the set of numbers from 0 to n − 1 inclusive. We write ‘ln’ for the
natural logarithm and ‘log’ for the logarithm to base 2. Recall the definitions of the symmetric
subspace from Section 1.4.8.

We use Sc to denote the complement of a subset S ⊆ [n], and |S| to denote the size of the
set S, so for example |S|+ |Sc| = n. We denote the empty set by ∅.

For a multipartite quantum state |ψ⟩ ∈ (Cd)⊗n that is product across some bipartition
S ⊂ [n], we may use labels on the states and tensor product symbol for clarity. For example, if
the state |ψ⟩ is product across the bipartition S : Sc with respective states |ϕ⟩ and |τ⟩, for k
copies we may write (see also Fig. 5.1)

|ψ⟩⊗k =
∣∣∣ϕS〉⊗k ⊗S ∣∣∣τSc

〉⊗k
, (5.6)

and similarly for operators.
Finally, recall that Schmidt decomposition allows us to write any bipartite state |ψ⟩ ∈

Cd1 ⊗Cd2 as
|ψ⟩ =

∑
i

γi |vi⟩ |wi⟩ , (5.7)

where the Schmidt coefficients γi are non-negative, the sets |vi⟩ and |wi⟩ are respectively
orthonormal, and the number of terms in the expansion is minimal and is referred to as the
Schmidt rank – see also Definition 1.19.

5.2 Results

Theorem 5.2

Testing BP requires
Ω(n/ logn) copies.

Lemma 5.3

Fact 5.6 Fact 5.7 Lemma 5.5

Lemma 5.4

Fact 5.8 Fact 5.9

Figure 5.2: Proof structure of the main theorem in this chapter and supporting results.

We first state the two main ingredients used in the proof of our main result.
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Lemma 5.3. For 0 < ϵ ≤ 1
2 , the existence of an ϵ-tester for the property of a multipartite

state being bipartite product using k copies implies that

D(ρ, σ) ≥ 1
3 −O(2−n), (5.8)

for D the trace distance, and where

ρ = Πk
dn(dn+k−1
k

) , σ = E
S⊆[n]

[ Πk
d|S| ⊗S Πk

dn−|S|(d|S|+k−1
k

)(dn−|S|+k−1
k

)], (5.9)

for Πk
d the projector onto the symmetric subspace of k systems of local dimension d.

Lemma 5.4. Consider the following states

ρ = Πk
dn(dn+k−1
k

) , σ = E
S⊆[n]

[ Πk
d|S| ⊗S Πk

dn−|S|(d|S|+k−1
k

)(dn−|S|+k−1
k

)], (5.10)

where Πk
d denotes the projector onto the symmetric subspace of k systems of local dimension

d. Then their squared trace-distance is upper bounded by the following expression:

D(ρ, σ)2 ≤ k!
4

(
1 + (k!)3

(1 + d

2d

)n
− e−k2/dn

)
. (5.11)

Using these two ingredients we can prove our main theorem.

5.2.1 Proof of Main Result

Theorem 5.2. An ϵ-tester for testing the property of a multipartite state |ψ⟩ ∈ (Cd)⊗n

being bipartite product requires at least Ω
(

n
logn

)
copies of the input state |ψ⟩, for any

0 < ϵ ≤ 1
2 .

Proof of Theorem 5.2. If a tester exists, by Lemma 5.3 we have that

1
3 ≤ O(2−n) +D(ρ, σ) (5.12)

for the states ρ, σ as stated. Lemma 5.4 then gives us
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D(ρ, σ)2 ≤ k!
4

(
1 + (k!)3

(1 + d

2d

)n
− e−k2/dn

)
(5.13)

≤ k!
4

(
(k!)3

(1 + d

2d

)n
+O(k2/dn)

)
(5.14)

≤ k4k

4 2−n
(

1 + 1
d

)n
+O(k2+kd−n), (5.15)

where we used k! ≤ kk and 1− e−k2/dn = O(k2/dn) (assuming k2/dn < 1 ∀n). The latter can
be seen from the fact that 1− e−f(n) ≤ e−1f(n) for all functions f(n) ≤ 1.

As the local dimension d ≥ 2, we have 1 + 1
d ≤

3
2 , and so

D2 ≤ k4k

4 2−n
(

3
2

)n
+O(k2+kd−n) (5.16)

≤ O
(
k4k

(
3
4

)n)
+O(k2+k2−n) (5.17)

≤ O
(
k4k

(
3
4

)n )
(5.18)

= O

(
24k log k−n log 4/3

)
. (5.19)

Thus after taking the square root we have

D ≤ O
(

22k log k−an
)
, (5.20)

where a = 1
2 log 4/3 ≈ 0.208. Now take k < cn

logn , with 0 < c < a
2 . Then observe that

2k log k − an < 2cn
logn

(
log c+ logn− log logn

)
− an (5.21)

= (2c− a)n+ (c log c)
(

n

logn

)
− c

(
n log logn

logn

)
(5.22)

< 0 for sufficiently large n, as 2c < a. (5.23)

This means that O(22k log k−an) would tend to zero as n goes to infinity. This contradicts the
assertion that a tester must satisfy

1
3 ≤ O(2−n) +D(ρ, σ), (5.24)

as the right hand side of the inequality would tend to zero as n tends to infinity. Hence no
tester exists unless k ∈ Ω( n

logn).

We also state and prove the following result on the distribution of the maximum Schmidt
coefficient under the Haar measure. Aside from potentially being of independent interest, it
primarily serves as a crucial ingredient in Lemma 5.3 where it is needed to show that the Haar
distribution is close to the same distribution conditioned on states with bounded maximum
Schmidt coefficient.
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Lemma 5.5. Let |ψ⟩ ∈ (Cd)⊗n be drawn uniformly at random from the Haar measure,
and let Γmax denote the maximum Schmidt coefficient over all non-trivial bipartitions.

Let
√

3
2 ≤ γ < 1 be a constant. Then there exist positive constants c1, c2 and N (in

terms of γ and d, expressions given below) such that for all n > N

P (Γmax > γ) ≤ c12ne−c2dn
. (5.25)

Here c1, c2, N are given by

c1 = 1
2

(30
γ2

)2d
, (5.26)

c2 = dγ4

126 ln 2 , (5.27)

N = 1
ln d ln

252 ln 2 ln
(

30
γ2

)
γ4

. (5.28)

Proof. From [183, 185] we have for λmax the max eigenvalue of either reduced density matrix
of a Haar random state:

P

(
λmax >

1
dA

+ δ

dA

)
≤
(10dA

δ

)2dA

exp
(
−dB

δ2

14 ln 2

)
, (5.29)

where dA and dB are the local dimensions across a fixed bipartition. Recall that the maximum
Schmidt coefficient is equal to the square root of the maximum eigenvalue. Hence using the
relabelling 1+δ

dA
= γ2 ⇐⇒ δ = dAγ

2 − 1, we can write the above as

P

(
λmax > γ2

)
= P (γmax > γ) (5.30)

≤
( 10dA
dAγ2 − 1

)2dA

exp
(
−dB

(dAγ2 − 1)2

14 ln 2

)
, (5.31)

for γmax the maximum Schmidt coefficient across this bipartition.
As we are considering n parties each with local dimension d, set dA = dx, where x ≤ n

2 , and
dB = dn−x. Note also that for γ ≥

√
3

2 and dA ≥ 2, we have

dAγ
2 ≥ 3

2 ⇐⇒ dAγ
2 − 1 ≥ dAγ

2

3 . (5.32)

Hence we can write

P (γmax > γ) ≤
(30
γ2

)2·dx

exp
(
−d

n+xγ4

126 ln 2

)
(5.33)

= exp(dx(a− bdn)), (5.34)
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for positive constants

a = 2 ln
(30
γ2

)
, b = γ4

126 ln 2 . (5.35)

For a− bdn ≤ 0, the worst case is for x = 1 (when dx is smallest, and dx(a− bdn) is largest).
So for n sufficiently large we have that

exp(dx(a− bdn)) ≤ exp(d(a− bdn)). (5.36)

Taking the union bound over all 2n−1 − 1 nontrivial bipartitions then gives

P (Γmax > γ) ≤ 2n−1 exp(d(a− bdn)) (5.37)

≡ c12ne−c2dn
, (5.38)

for Γmax the maximum Schmidt coefficient over all bipartitions, and where

c1 = 1
2e
da = 1

2

(30
γ2

)2d
, c2 = db = dγ4

126 ln 2 . (5.39)

Finally, observe that we can rewrite the condition a− bdn ≤ 0 as

n ≥
ln
(
a
b

)
ln(d) =

ln
(

ln 2c1
c2

)
ln(d) = 1

ln d ln

252 ln 2 ln
(

30
γ2

)
γ4

. (5.40)

5.2.2 Proof of Lemma 5.3

Lemma 5.3. For 0 < ϵ ≤ 1
2 , the existence of an ϵ-tester for the property of a multipartite

state being bipartite product using k copies implies that

D(ρ, σ) ≥ 1
3 −O(2−n), (5.8)

for D the trace distance, and where

ρ = Πk
dn(dn+k−1
k

) , σ = E
S⊆[n]

[ Πk
d|S| ⊗S Πk

dn−|S|(d|S|+k−1
k

)(dn−|S|+k−1
k

)], (5.9)

for Πk
d the projector onto the symmetric subspace of k systems of local dimension d.

Proof. Suppose there is a tester for the property of being bipartite product (BP) using k copies
of the input state. This means that there exists an operator (a POVM element) M : (Cd)⊗kn →
(Cd)⊗kn with 0 ≤M ≤ 1, such that for all inputs |ψ⟩ ∈ (Cd)⊗n we have the following.
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• If |ψ⟩ is BP then Tr(M |ψ⟩⟨ψ|⊗k) ≥ 2
3 .

• If |ψ⟩ is ϵ-far from being BP then Tr(M |ψ⟩⟨ψ|⊗k) ≤ 1
3 .

This implies that for any |ψ⟩ that is BP, and any |ϕ⟩ that is ϵ far from being BP we have

Tr
(
M
(
|ψ⟩⟨ψ|⊗k − |ϕ⟩⟨ϕ|⊗k

))
≥ 1

3 . (5.41)

By linearity, this must also hold if we replace the states with averages, respectively according
to any distribution DBP on BP states, and any distribution DF on states ϵ-far from being BP.
The variational characterisation of the trace distance then also allows us to write

1
3 ≤ Tr

(
M
(
Eψ∼DBP

(|ψ⟩⟨ψ|⊗k)−Eϕ∼DF
(|ϕ⟩⟨ϕ|⊗k)

))
, (5.42)

≤ D
(
Eψ∼DBP

(|ψ⟩⟨ψ|⊗k) , Eϕ∼DF
(|ϕ⟩⟨ϕ|⊗k)

)
. (5.43)

We will take DBP as the distribution defined by taking a random non-trivial bipartition of the
n parties, and then randomising over pure states on each subsystem using the Haar measure.
More concretely, for some subset S ⊆ [n] denote the normalised states

τS =
(∫

dθ |θ⟩⟨θ|⊗k
)
⊗S

(∫
dω |ω⟩⟨ω|⊗k

)
(5.44)

=
Πk
d|S| ⊗S Πk

dn−|S|(d|S|+k−1
k

)(dn−|S|+k−1
k

) , (5.45)

where Πk
d is the projector onto the symmetric subspace – see Eq. (1.92) and Eq. (1.93).

Define σ := ES⊆[n]

[
τS

]
, and as a distribution over BP states we will take

σ′ := Eψ∼DBP
(|ψ⟩⟨ψ|⊗k) = E

S⊆[n]
S ̸=∅,[n]

[
τS

]
. (5.46)

These states are O(2−n) close in trace distance, as seen by the following calculation (using the
triangle inequality).

∥∥∥∥∥∥∥∥ ES⊆[n]

[
τS

]
− E

S⊆[n]
S ̸=∅,[n]

[
τS

]∥∥∥∥∥∥∥∥
1

=

∥∥∥∥∥∥∥∥∥
1
2n
(
τ∅ + τ[n]

)
+
( 1

2n −
1

2n − 2

) ∑
S⊆[n]
S ̸=∅,[n]

τS

∥∥∥∥∥∥∥∥∥
1

(5.47)

≤ 1
2n
(
∥τ∅∥1 +

∥∥∥τ[n]

∥∥∥
1

)
+
∣∣∣∣ 1
2n −

1
2n − 2

∣∣∣∣ ∑
S⊆[n]
S ̸=∅,[n]

∥τS∥1 (5.48)

= 1
2n−1 + (2n − 2)

∣∣∣∣ 1
2n −

1
2n − 2

∣∣∣∣ (5.49)

= 1
2n−2 . (5.50)
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Now define DF to be the Haar measure conditioned on the maximum Schmidt coefficient over
all bipartitions being at most γ =

√
1− ϵ2. This guarantees that the output is at least ϵ-far in

trace distance from being BP by the following facts, with proof in Section 5.4.1.

Fact 5.6.

(i) The maximum Schmidt coefficient γmax of a bipartite state |ψ⟩ ∈ Cd1 ⊗Cd2 is equal
to

max
|α⟩∈Cd1

|β⟩∈Cd2

|⟨ψ| |α⟩ |β⟩|. (5.51)

(ii) If a multipartite state |ψ⟩ ∈ (Cd)⊗n has max Schmidt coefficient at most γ across
any nontrivial bipartition, then it must be at least ϵ-far in trace distance from any
bipartite product state, for ϵ =

√
1− γ2.

We also require the following fact, which intuitively states that if two distributions only
disagree on a subset that occurs with small probability, then the distributions themselves will
be close. We give proof in Section 5.4.2.

Fact 5.7. Let H denote the Haar distribution, and Hs be the Haar distribution conditioned
on states belonging to some measurable set S. Let p be the probability that a Haar random
state does not belong to S, i.e. p = 1−

∫
S dψ. Define the states

ρ = Eψ∼H(|ψ⟩⟨ψ|⊗k), (5.52)

ρ′ = Eϕ∼HS
(|ϕ⟩⟨ϕ|⊗k). (5.53)

Then the trace distance between these states is at most p:

D(ρ, ρ′) ≤ p. (5.54)

Now take S as the set of states with maximum Schmidt coefficient at most γ. By Lemma 5.5,
for

√
3

2 ≤ γ ≤ 1 the probability that a Haar random state has maximum Schmidt coefficient
greater than γ is at most c12ne−c2dn , where c1 and c2 are given in Lemma 5.5. Hence by Fact 5.7
the trace distance between the following states

ρ = Eψ∼H(|ψ⟩⟨ψ|⊗k) (5.55)

ρ′ = Eϕ∼HS
(|ϕ⟩⟨ϕ|⊗k) (5.56)
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is at most c12ne−c22n . Finally, Fact 5.6 tells us that if |ψ⟩ has maximum Schmidt coefficient at
most γ across any bipartition, then it is ϵ =

√
1− γ2 far in trace distance from any BP state.

The condition
√

3
2 ≤ γ ≤ 1 is equivalent to 0 ≤ ϵ ≤ 1

2 .
Thus in summary, by two applications of the triangle inequality the existence of an ϵ-tester

for bipartite productness, for 0 < ϵ ≤ 1
2 , implies that

1
3 ≤ D(ρ′, σ′) (5.57)

≤ D(σ, σ′) +D(ρ, ρ′) +D(ρ, σ) (5.58)

≤ O(2−n) +O(2ne−cdn) +D(ρ, σ) (5.59)

≤ O(2−n) +D(ρ, σ), (5.60)

for c > 0 a constant and where

ρ = Πk
dn(dn+k−1
k

) , σ = E
S⊆[n]

[ Πk
d|S| ⊗S Πk

dn−|S|(d|S|+k−1
k

)(dn−|S|+k−1
k

)]. (5.61)

5.2.3 Proof of Lemma 5.4

Lemma 5.4. Consider the following states

ρ = Πk
dn(dn+k−1
k

) , σ = E
S⊆[n]

[ Πk
d|S| ⊗S Πk

dn−|S|(d|S|+k−1
k

)(dn−|S|+k−1
k

)], (5.10)

where Πk
d denotes the projector onto the symmetric subspace of k systems of local dimension

d. Then their squared trace-distance is upper bounded by the following expression:

D(ρ, σ)2 ≤ k!
4

(
1 + (k!)3

(1 + d

2d

)n
− e−k2/dn

)
. (5.11)

Proof. First, we can use the following standard inequality to replace the 1-norm with the
2-norm, for any matrix A ∈ Cd×d

∥A∥1 ≤
√
d∥A∥2, (5.62)

where ∥A∥p := Tr (|A|p)
1
p . So we have

D(ρ, σ)2 = 1
4∥ρ− σ∥

2
1 (5.63)

≤ dnk

4 ∥ρ− σ∥
2
2 = dnk

4 Tr
(
(ρ− σ)2

)
(5.64)

= dnk

4

(
Tr(ρ2) + Tr(σ2)− 2Tr(ρσ)

)
. (5.65)
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To calculate Tr(ρσ), we will now use the fact that

Symk
d1 ⊗ Symk

d2 ⊆ Symk
d1d2 . (5.66)

To see this, take a state |ψ⟩ ∈ Symk
d1 ⊗Symk

d2 . Then by definition it is preserved under Uα⊗Uβ
∀α, β ∈ Sk. In particular, it is preserved when α = β, and we have Uα ⊗ Uα = U ′α, where U ′α
acts on the whole space. So |ψ⟩ is in Symk

d1d2 – see also Fig. 5.1 for a visual aid. This implies
the following relationship between the projectors onto these spaces

Πk
d1d2 ·

(
Πk
d1 ⊗Πk

d2

)
= Πk

d1 ⊗Πk
d2 . (5.67)

Hence we have

Tr(ρσ) = E
S

[ Tr
(
Πk
dn ·Πk

d|S| ⊗S Πk
dn−|S|

)
(dn+k−1

k

)(d|S|+k−1
k

)(dn−|S|+k−1
k

)] (5.68)

= 1(dn+k−1
k

) E
S

[Tr
(
Πk
d|S| ⊗S Πk

dn−|S|

)
(d|S|+k−1

k

)(dn−|S|+k−1
k

)] (5.69)

= 1(dn+k−1
k

) = Tr(ρ2). (5.70)

So altogether at this stage we have

D2 ≤ dnk

4

(
Tr(ρ2) + Tr(σ2)− 2Tr(ρσ)

)
(5.71)

= dnk

4

(
Tr(σ2)− Tr(ρ2)

)
. (5.72)

We will now use the following fact to bound Tr(ρ2) and Tr(σ2), deferring the proof to Sec-
tion 5.4.3.

Fact 5.8. For all a, b ∈ N we have

ab

b! ≤
(
a+ b− 1

b

)
≤ ab

b! e
b2/a. (5.73)

We can use this to bound Tr(ρ2) as follows.

Tr(ρ2) = 1(dn+k−1
k

) ≥ k!
ek2/dndnk

. (5.74)

To bound Tr
(
σ2), we can again employ Fact 5.8 to obtain

1(d|S|+k−1
k

) ≤ k!
d|S|k

, (5.75)
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so that

Tr(σ2) = Tr

 E
S,T⊆[n]


(
Πk
d|S| ⊗S Πk

d|Sc|

) (
Πk
d|T | ⊗T Πk

d|T c|

)
(d|S|+k−1

k

)(d|Sc|+k−1
k

)(d|T |+k−1
k

)(d|T c|+k−1
k

)
 (5.76)

≤ (k!)4

d2nk F (k, n, d), (5.77)

using |S|+ |Sc|+ |T |+ |T c| = 2n and where we define

F ≡ F (k, n, d) = Tr
(

E
S,T⊆[n]

[(
Πk
d|S| ⊗S Πk

d|Sc|

) (
Πk
d|T | ⊗T Πk

d|T c|

)])
. (5.78)

Hence at this stage we have

D2 ≤ dnk

4

(
Tr(σ2)− Tr(ρ2)

)
(5.79)

≤ dnk

4

(
F · (k!)4

d2nk −
k!

ek2/dndnk

)
(5.80)

= k!
4

(
F · (k!)3

dnk
− e−k2/dn

)
. (5.81)

We now seek an upper bound on F . Recall that

Πk
d = E

α∈Sk

[Uα] , (5.82)

where
Uα =

∑
x∈[d]k

∣∣∣xα−1(1), ..., xα−1(k)
〉〈
x1, ..., xk

∣∣∣ . (5.83)

We can thus write

F = Tr
(
E
S,T

[ (
Πk
d|S| ⊗S Πk

d|Sc|

) (
Πk
d|T | ⊗T Πk

d|T c|

) ])
(5.84)

= E
S,T⊆[n]

α,β,γ,δ∈Sk

[
Tr
((
USα ⊗S US

c

β

) (
UTγ ⊗T UT

c

δ

))]
(5.85)

= E
S,T

α,β,γ,δ

[
Tr
(
US∩Tαγ ⊗ US∩T c

αδ ⊗ US
c∩T

βγ ⊗ US
c∩T c

βδ

)]
(5.86)

= E
S,T

α,β,γ,δ

[
Tr
(
US∩Tαγ

)
Tr
(
US∩T

c

αδ

)
Tr
(
US

c∩T
βγ

)
Tr
(
US

c∩T c

βδ

)]
, (5.87)

where the superscripts denote the systems that the unitaries act on.
We now use the following fact, giving proof in Section 5.4.4.
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Fact 5.9. For some permutation α ∈ Sk, consider the unitary

Uα =
∑

x∈[d]k

∣∣∣xα−1(1), ..., xα−1(k)
〉〈
x1, ..., xk

∣∣∣ . (5.88)

Let c(α) be the number of cycles in the permutation α. Then we have

Tr (Uα) = dc(α). (5.89)

Hence we can write

F = E
S,T

α,β,γ,δ

[
Tr
(
US∩Tαγ

)
Tr
(
US∩T

c

αδ

)
Tr
(
US

c∩T
βγ

)
Tr
(
US

c∩T c

βδ

)]
(5.90)

= E
S,T

α,β,γ,δ

[
d|S∩T |c(αγ)+|S∩T c|c(αδ)+|Sc∩T |c(βγ)+|Sc∩T c|c(βδ)

]
. (5.91)

We can simply this expression slightly and eliminate one of the sums over Sk as follows. First
we use the substitutions relabelling δ′ = βδ and γ′ = βγ:

F = E
S,T

α,β,γ′,δ′

[
d|S∩T |c(αβ

−1γ′)+|S∩T c|c(αβ−1δ′)+|Sc∩T |c(γ′)+|Sc∩T c|c(δ′)
]
. (5.92)

Next we can define α′ = αβ−1δ′, followed by δ′′ = δ−1 to get

F = E
S,T

α′,β,γ′,δ′

[
d|S∩T |c(αδ

′−1γ′)+|S∩T c|c(α′)+|Sc∩T |c(γ′)+|Sc∩T c|c(δ′)
]

(5.93)

= E
S,T

α′,γ′,δ′′

[
d|S∩T |c(αδ

′′γ′)+|S∩T c|c(α′)+|Sc∩T |c(γ′)+|Sc∩T c|c(δ′′−1)
]
. (5.94)

Finally, we can use the fact that the cycle number is preserved under inverses, i.e. c(δ−1) = c(δ),
and perform a global relabelling to arrive at

F = E
S,T
α,γ,δ

[
d|S∩T |c(αδγ)+|S∩T c|c(α)+|Sc∩T |c(γ)+|Sc∩T c|c(δ)

]
. (5.95)

We can now separate out the case where α, δ, γ are all the identity permutation e ∈ Sk, so here
the cycle length is k.
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F = E
S,T
α,γ,δ

[
d|S∩T |c(αδγ)+|S∩T c|c(α)+|Sc∩T |c(γ)+|Sc∩T c|c(δ)

]
(5.96)

= 1
(k!)3 E

S,T

[
dk(|S∩T |+|S∩T c|+|Sc∩T |+|Sc∩T c|)

]
(5.97)

+ (k!)3−1
(k!)3 E

S,T
α,δ,γ∈Sk

(α,δ,γ)̸=(e,e,e)

[
d|S∩T |c(αδγ)+|S∩T c|c(α)+|Sc∩T |c(γ)+|Sc∩T c|c(δ)

]
(5.98)

≤ dnk

(k!)3 + E
S,T

α,δ,γ∈Sk
(α,δ,γ)̸=(e,e,e)

[
d|S∩T |c(αδγ)+|S∩T c|c(α)+|Sc∩T |c(γ)+|Sc∩T c|c(δ)

]
. (5.99)

Now the next biggest term within the expectation (after the case of α, δ, γ all equal to the
identity) will be when exactly one of α, δ, γ is equal to a single SWAP and identity on the
rest. In this case, we can take without loss of generality c(α) = k − 1, c(δ) = c(γ) = k and
c(αδγ) = k − 1. Thus

F ≤ dnk

(k!)3 + E
S,T

[
d|S∩T |(k−1)+|S∩T c|(k−1)+|Sc∩T |k+|Sc∩T c|k

]
(5.100)

= dnk

(k!)3 + d(k−1)n
E
S,T

[
d|S

c∩T |+|Sc∩T c|
]
. (5.101)

Now observe that

E
S,T

[
d|S

c∩T |+|Sc∩T c|
]

= E
S

[
d|S

c|
]

= E
S

[
d|S|

]
(5.102)

= 1
2n

n∑
s=0

(
n

s

)
ds (5.103)

=
(1 + d

2

)n
. (5.104)

So we have shown that

F ≤ dnk

(k!)3 + d(k−1)n
(1 + d

2

)n
(5.105)

= dnk

(k!)3 + dnk
(1 + d

2d

)n
. (5.106)

Bringing this all together and plugging in our bound on F into Eq. (5.81), we have

D2 ≤ k!
4

(
F · (k!)3

dnk
− e−k2/dn

)
(5.107)

≤ k!
4

(
1 + (k!)3

(1 + d

2d

)n
− e−k2/dn

)
, (5.108)

as claimed.
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5.3 Concluding remarks

We have demonstrated that testing bipartite productness requires at least Ω(n/ logn) copies,
which matches the upper bound of O(n) from [176] up to a logarithmic factor. As discussed
in the introduction, this also implies that computing the generalised geometric measure of
entanglement for multipartite states requires Ω(n/ logn) copies in general. Another implication
is that if one wishes to test the property of some graph state corresponding to a non-connected
graph using less than Ω(n/ logn) copies, one would need a different approach to that of simply
testing for bipartite productness.

In would be interesting to see if our bound could be further tightened to Ω(n) to match
the known upper bound more closely, although we believe alternative proof techniques would
be needed. One could also study the dependence on ϵ in more depth – in our techniques this
dependence appears via Lemma 5.5 and Fact 5.6 in combination, however as we take n to
infinity the relevant term in Lemma 5.3 tends to zero for all ϵ.

Another compelling avenue would be to examine the complementary property of being
genuine multipartite entangled, which to the best of our knowledge has not yet been studied.
Clearly one cannot directly test for this in the property testing framework, as any bipartite
product state can be arbitrarily close to a GME state in trace distance, e.g by slight perturbations
of the state. However, one could consider the property of being maximally multipartite entangled
according to some measure, such as the generalised geometric measure discussed in this chapter.

5.4 Proofs of supporting facts

5.4.1 Proof of Fact 5.6

Fact 5.6.

(i) The maximum Schmidt coefficient γmax of a bipartite state |ψ⟩ ∈ Cd1 ⊗Cd2 is equal
to

max
|α⟩∈Cd1

|β⟩∈Cd2

|⟨ψ| |α⟩ |β⟩|. (5.51)

(ii) If a multipartite state |ψ⟩ ∈ (Cd)⊗n has max Schmidt coefficient at most γ across
any nontrivial bipartition, then it must be at least ϵ-far in trace distance from any
bipartite product state, for ϵ =

√
1− γ2.

Proof.

(i) Write |ψ⟩ = ∑
i γi |ui⟩ |vi⟩ in Schmidt decomposition, with |ui⟩ and |vi⟩ respectively

orthonormal sets and γi non-negative and non-increasing with i. Denote γmax ≡ γ0 as the
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maximum Schmidt coefficient. Clearly taking |α⟩ = |u0⟩ and |β⟩ = |v0⟩ shows that

γmax ≤ maxα,β|⟨ψ| |α⟩ |β⟩|. (5.109)

We also have that

maxα,β|⟨ψ| |α⟩ |β⟩| ≤
∑

γi|⟨α|ui⟩ ⟨β|vi⟩| (5.110)

≤ γmax
∑
|⟨α|ui⟩ ⟨β|vi⟩| (5.111)

≤ γmax

√∑
i

|⟨α|ui⟩|2
∑
j

|⟨β|vj⟩|2 (5.112)

= γmax, (5.113)

where we used the Triangle and Cauchy-Schwarz inequalities.

(ii) Recall the well known relation between trace distance and fidelity for pure states

1
2∥|ψ⟩⟨ψ| − |ϕ⟩⟨ϕ|∥1 =

√
1− |⟨ψ|ϕ⟩|2. (5.114)

Now let |ϕ⟩ = |α⟩ |β⟩ be a BP state (written across some bipartition). Then

1
2∥|ψ⟩⟨ψ| − |ϕ⟩⟨ϕ|∥1 =

√
1− |⟨ψ| |α⟩ |β⟩|2 ≥

√
1− γ2, (5.115)

where the last inequality follows from part (i).

5.4.2 Proof of Fact 5.7

Fact 5.7. Let H denote the Haar distribution, and Hs be the Haar distribution conditioned
on states belonging to some measurable set S. Let p be the probability that a Haar random
state does not belong to S, i.e. p = 1−

∫
S dψ. Define the states

ρ = Eψ∼H(|ψ⟩⟨ψ|⊗k), (5.52)

ρ′ = Eϕ∼HS
(|ϕ⟩⟨ϕ|⊗k). (5.53)

Then the trace distance between these states is at most p:

D(ρ, ρ′) ≤ p. (5.54)

Proof. We can write
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ρ′ = 1
1− p

∫
dϕ |ϕ⟩⟨ϕ|⊗k 1S(ϕ), (5.116)

where 1S(ϕ) = 1 if |ϕ⟩ ∈ S and 0 otherwise (the indicator function), and p is a normalisation
factor enforcing Tr(ρ) = 1. Then we have

∥∥ρ− ρ′∥∥1 =
∥∥∥∥∫ dψ |ψ⟩⟨ψ|⊗k

(
1− 1

1− p1S
)∥∥∥∥

1
(5.117)

≤
∫
dψ

∥∥∥|ψ⟩⟨ψ|⊗k∥∥∥
1

∣∣∣∣1− 1
1− p1S

∣∣∣∣ (5.118)

=
∫
dψ

∣∣∣∣1− 1
1− p1S

∣∣∣∣ (5.119)

=
∫
S
dψ

( 1
1− p − 1

)
+
∫
Sc
dψ (5.120)

= (1− p)
( 1

1− p − 1
)

+ p (5.121)

= 2p. (5.122)

5.4.3 Proof of Fact 5.8

Fact 5.8. For all a, b ∈ N we have

ab

b! ≤
(
a+ b− 1

b

)
≤ ab

b! e
b2/a. (5.73)

Proof. Firstly, we have

(
a+ b− 1

b

)
= (a+ b− 1)!

b!(a− 1)! (5.123)

= (a+ b− 1) . . . (a)
b! (5.124)

≥ ab

b! . (5.125)

For the upper bound, observe that
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(
a+ b− 1

b

)
= (a+ b− 1)!

b!(a− 1)! (5.126)

= (a+ b− 1) . . . (a)
b! (5.127)

≤ (a+ b− 1)b
b! (5.128)

≤ ab

b! (1 + b

a
)b (5.129)

≤ ab

b! e
b2/a, (5.130)

where in the last line we used that 1 + x ≤ ex for all real x.

5.4.4 Proof of Fact 5.9

Fact 5.9. For some permutation α ∈ Sk, consider the unitary

Uα =
∑

x∈[d]k

∣∣∣xα−1(1), ..., xα−1(k)
〉〈
x1, ..., xk

∣∣∣ . (5.88)

Let c(α) be the number of cycles in the permutation α. Then we have

Tr (Uα) = dc(α). (5.89)

Proof. The trace of a permutation matrix is the number of fixed points. First consider if there
is only one cycle. Then there are d fixed points, occurring exactly when x1 = · · · = xk. Now
suppose α has m cycles, and write it in cycle decomposition as

α = c1 . . . cm. (5.131)

As these cycles act on independent copies of the system, we can write

Uα = Uc1 ⊗ · · · ⊗ Ucm , (5.132)

from which it follows that

Tr(Uα) = Tr(Uc1) . . .Tr(Ucm) (5.133)

= d× · · · × d (5.134)

= dm. (5.135)
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Conclusions

In this thesis, we have considered several quantum resources, including quantum steering,
measurement incompatibility, coherence, and entanglement. We have introduced and explored
a number of novel ideas, such as steering in networks, high-dimensional measurement incompat-
ibility, coherence in gadget-based quantum computation, and property testing of non genuinely
multipartite entangled states.

Before detailing some concrete research questions that came out of these works, we first
briefly comment on the field of quantum information in general. As alluded to in the introduction,
two driving questions can be posed as:

(1) Why is quantum mechanics weird?

(2) How can this weirdness be useful?

Firstly, it is of high value to continue deepening our understanding of quantum properties
and resources, and exactly where the quantum-classical boundary lies. When are we witnessing
genuinely quantum behaviour? How can we be convinced that some phenomena cannot be
explained classically? For which tasks can we expect a quantum advantage? Continued work
in the foundational aspects of this field is required to reach a more complete answer to these
questions. For example, deepening our understanding of fundamental properties of entanglement
and nonlocality, understanding the relationship between quantum and classical complexity
classes, or exploring operational interpretations of information theoretic quantities. One of
the most exciting aspects of the field of quantum information is that it is a combination of
many different ideas and concepts. There is surely much to be gained by combining seemingly
distinct notions and exploring novel fundamental concepts: indeed the intersection of ideas from
computer science and quantum mechanics is at the heart of the whole field.

Secondly, there is a great push presently to find relevant applications of quantum techno-
logies in society, and several startup companies now exist with venture capital funding. The
development of quantum computers would provide huge benefits both for continued fundamental
research, as well as their potential to provide computational insights to genuinely useful prob-
lems, such as in material modelling. With the advent of several recent quantum computational
supremacy claims, it is an exciting time as quantum computers are now reaching the point of
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being able to genuinely outperform classical computers for certain tasks. It is important for us
to be seriously exploring how these new technologies can provide benefit to industry, whilst
being responsible regarding the dangers of over-hype.

Let us now summarise the key ideas and questions appearing in each chapter.

Chapter 2: Network quantum steering

Main contributions

• We introduced a new definition of quantum steering for networks.

• We provided no-go results of when network steering is not possible, in terms of properties
of the sources in the network.

• We gave concrete examples of network steering, including a form of activation using
unsteerable states.

Open questions

Measurement incompatibility in quantum networks.

As discussed in Chapter 2, it is possible to exhibit quantum nonlocality (and steering) in
networks even when the parties perform fixed measurements. It is well understood that in the
standard Bell nonlocality setting, measurement incompatibility is necessary in order to observe
nonlocal correlations. So how does this property manifest itself when only a single measurement
is performed? Conceptually one can imagine that a set of incompatible measurements is being
performed, conditioned on the value of one of the sources. However we have shown that network
steering is achievable when the parties perform fixed Bell-type measurements, in which case it
is not at all clear how measurement incompatibility might be at play here – perhaps there is a
completely different measurement resource that is the relevant one.

Classifying NLHS models.

Another research question that emerged from the project on network steering is that of
determining when properties of the sources (e.g. separable, unsteerable, local) can allow us
to immediately conclude a local hidden state model exists. We examined several basic cases,
however there are several cases left unknown, for example the case of five parties sharing
respective sources that are separable, local, local, and separable. It would be interesting to
either show that in such a case one always arrives at a NLHS model, or find an example for which
quantum steering can arise – in either case the goal would be to find a tight characterisation of
such scenarios.
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Chapter 3: High dimensional measurement incompatibility

Main contributions

• We introduced a new definition of high-dimensional measurement incompatibility for a
set of measurement, which can also be seen as a form of compression.

• We showed that this definition is mathematically equivalent to high-dimensional quantum
steering.

• We introduced n-partially incompatibility breaking channels and characterised their Choi
states.

Open questions

Characterisation of quantum channels with Choi state possessing FDI-SN n.

There exists a concrete correspondence via channel state duality between states of Schmidt
number n and n-partially entanglement breaking channels. In our work we also discussed a
correspondence between n-partially incompatibility breaking channels, and states for which
one can certify a Schmidt number of n in a semi-device independent (steering) scenario. A
natural question is then to consider states for which one can certify a Schmidt number of n in a
fully-device independent (nonlocality) scenario, and ask if there is some intuitive or operational
characterisation of the channels.

Chapter 4: The Hadamard gate cannot be replaced by a
resource state in universal quantum computation

Main contributions

• We provided a unified framework from which to consider models of quantum computation
that involve free operations acting on some fixed resourceful state.

• We showed that any model of quantum computation must involve the resource of coherence
in the operations (exemplified by the Hadamard gate). That is, coherence cannot be
siphoned off to some supplementary state, unlike in the cases of magic in magic state
injection or entanglement in measurement based quantum computation.

Open questions

Resource theoretic results and quantum computation.

There are several interesting results involving the resources of magic and entanglement:
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• It has been shown that in measurement based quantum computation, having too much
entanglement renders the overall computation classically simulable [186, 187], and a
similar result has been shown for the resource of magic in [188]

• The axiomatic and operational approaches to the resource theory often do not coincide,
e.g. for entanglement [189] and magic [190].

• Simulation algorithms that scale with a resource quantifier, e.g. for magic [77].

I have wondered about if these results can be extended to other resources, or even proved
in general. For example, several parallels have been made in [139, 140] between the resource
theory of magic and that of matchgates. In general, it would be interesting to see how much of
the machinery developed for magic also could be applied to matchgates, and also if perhaps
there is a more fundamental underlying structure.

Measurement Incompatibility in MBQC

In a similar vein, studying the role of measurement incompatibility in measurement based
quantum computation would be an exciting avenue to explore. Specifically, one could consider
a general set up in which some entangled resource state |Ψ⟩ is provided, and one can perform
adaptive measurements at each site according to some set of measurements Ma|x. If these
measurements are compatible, one would expect that any computation could be simulated
classically, as one could instead perform the fixed measurement of the parent POVM at each
site. However we know that universal quantum computation is possible even when this set Ma|x

is simply X and Z measurements [135]. Hence it would be interesting to see if one can quantify
the simulability of some measurement based computation in terms of the incompatibility of the
allowed measurements Ma|x. One could try to achieve an analogous result to that in the case of
magic introduced in [77].

Tighter bounds and more complete analysis.

Another natural question would be to improve or show optimality of the bounds presented in
Chapter 4, and find lower bounds on implementing n Hadamards using k Hadamards, incoherent
unitaries, classical control, computational basis measurements, and an arbitrary ancilla.

Quantum control of free operations.

As also discussed in Chapter 4, the resource of coherence has the property that the quantum
control of free operations remains free. This is not true for entanglement, as for example a
CNOT gate (controlled-X) gate is capable of generating entanglement, and so is not free. Nor
is it the case for magic, as a controlled-S gate is non-Clifford despite S being a Clifford gate.
Finding another resource theory whose free operations are preserved under quantum control
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could lead to analogous results as presented in Chapter 4, but with this alternative resource as
opposed to coherence.

Trade-offs between unitarity and resource content.

It could also be possible to generalise some of the underlying machinery in Chapter 4 in the
following way. If some channel ρ 7→ Tr2(U ρ ⊗ τ U †) is close in induced trace distance to a
unitary channel ρ 7→ V ρV † for some fixed ancillary state τ and unitaries U and V , then the
resource content of V cannot be much higher than that of U .

To gain some intuition for this idea, suppose that the resource content of U is much lower
than that of V . Suppose also that the channel ρ 7→ Tr2(U ρ⊗ τ U †) and ρ 7→ V ρV † are close
in induced trace distance, which should imply that the resource content of the two channels
are similar, for any continuous resource quantifier. As the resource content of U is much less
than that of V , the channel Λ(ρ) = Tr2(U ρ⊗ τ U †) must be using the ancillary state in some
way, and hence the unitary U cannot be in product form – one extreme possibility is that the
unitary U is simply swapping in the resourceful ancillary state. But then the overall channel
would be far from unitary (for example, if U was a swap, then the resultant channel would
simply be the constant channel that always prepares τ). However if Λ is far from being unitary,
then in particular it cannot be close to V , which would be a contradiction. Hence, this hints at
a general trade-off between unitarity and resource content in this scenario. See [160] for some
work in this direction.

Relationship between coherence and measurement incompatibility.

Again as raised in Chapter 4, could it be the case that either coherence or measurement
incompatibility must be present in the operations in order to perform universal quantum com-
putation? Clearly in the circuit model, coherence is the relevant resource here as measurements
are typically always taken in the computational basis. However in measurement based quantum
computation, the only operations performed are adaptive local measurements, and universal
measurement based quantum computation is possible with only X and Z measurements. One
could think of the ability to perform the Hadamard gate as being equivalent in some sense to
the ability to perform X and Z measurements, in which case perhaps a more helpful perspect-
ive is to consider these as two sides of the same underlying resource, which is necessary for
computational universality.

Chapter 5: Testing multipartite productness is easier
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than testing bipartite productness

Main contributions

• We proved a lower bound on the number of copies required to test the property of not
being genuinely multipartite entangled.

• We showed that this also provides a lower bound for a particular method of testing non-
connectiveness of a graph underlying a graph state, and on the complexity of computing
the geometric measure of entanglement.

Open questions

Testing genuine multipartite entanglement

As highlighted in Chapter 5, studying the complementary property to bipartite productness of
genuine multipartite entanglement would be a natural future avenue. For example, how many
copies of a state are required to determine if it is locally equivalent to a multipartite GHZ state,
or ϵ-far from any such states, given the promise that is one of these cases? It would also be
worthwhile attempting to better understand any practical significance of testing multipartite
entanglement, for example of it could be of use in characterising graph states experimentally.

6.1 Final remarks

In any kind of explorative research, there are two crucial tasks. The first is of being able to ask
the right kind of questions, opening up a novel direction and uncovering a rich landscape of
further research directions. The second is of solving and answering such questions. Academia as
a whole surely needs both the question-askers and the problem-solvers.

The majority of this thesis arguably falls into the former: Chapters 2, 3 and 4 are primarily
introducing novel research directions, whereas Chapter 5 is more focused on performing the
technical work of answering a well-defined question (that is, proving a lower bound).

It is my hope that in the field of quantum information in general, the art of posing interesting
questions will continue to be celebrated in equal amount to the discovery of solutions to existing
problems. There is highly fertile ground in the subfields of quantum foundations, resource
theories, quantum measurements, and quantum computation left to explore, and I am confident
that future enquiries in these domains will continue to lead to exciting and fruitful discoveries,
and ultimately provide technological benefit to society at large.

We thank the reader for their attention. Any comments or questions can be directed to
bdmjones ⟨at⟩ hotmail ⟨dot⟩ co ⟨dot⟩ uk.
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